(12分)在等比數(shù)列{an}中,a2﹣a1=2,且2a2為3a1和a3的等差中項,求數(shù)列{an}的首項、公比及前n項和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的公比為,是的前項和.
(1)若,,求的值;
(2)若,,有無最值?并說明理由;
(3)設(shè),若首項和都是正整數(shù),滿足不等式:,且對于任意正整數(shù)有成立,問:這樣的數(shù)列有幾個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)在與之間插入個數(shù)連同與按原順序組成一個公差為()的等差數(shù)列.
①設(shè),求數(shù)列的前和;
②在數(shù)列中是否存在三項(其中成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項公式及的值;
(Ⅱ)比較+++ +與Sn的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是各項都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,,.
(1)求數(shù)列,的通項公式;
(2)設(shè)數(shù)列的前項和為,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的所有項均為正數(shù),首項=1,且成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)數(shù)列{}的前項和為,若=,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定數(shù)列.對,該數(shù)列前項的最大值記為,后項的最小值記為,.
(Ⅰ)設(shè)數(shù)列為,,,,寫出,,的值;
(Ⅱ)設(shè)是公比大于的等比數(shù)列,且.證明:是等比數(shù)列.
(Ⅲ)設(shè)是公差大于的等差數(shù)列,且,證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,且對任意的都有.
(1)求證:是等比數(shù)列;
(2)若對任意的都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com