(12分)已知橢圓的離心率,過右焦點的直線與橢圓相交于兩點,當直線的斜率為1時,坐標原點到直線的距離為.
(1)求橢圓的方程
(2)橢圓上是否存在點,使得當直線繞點轉到某一位置時,有成立?若存在,求出所有滿足條件的點的坐標及對應直線方程;若不存在,請說明理由。
(1)(2)存在,坐標為.

試題分析:(1)因為直線過右焦點,斜率為1,
所以直線的方程為:.
坐標原點到直線的距離為,所以,所以.             …2分
因為離心率為,所以所以,
所以橢圓C的方程為.                                           …4分
(2)因為直線過右焦點,所以當直線斜率不存在時,直線方程為:
所以所以,為右端點時,,
所以此時沒有符合要求的點.
當直線斜率存在時,設直線方程為:,
得:.                        …7分
設點的坐標分別為,
,因為,,
所以,
所以
所以點的坐標為,且符合橢圓方程,
所以,解得
所以點的坐標為.                                  …12分
點評:設直線方程時要注意斜率存在與不存在兩種情況,求解直線與橢圓位置關系問題時,通常要聯(lián)立方程組,運算量比較大,應該仔細計算,并且要注意通性通法的應用,加強解題的規(guī)范性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是雙曲線的兩個焦點,點在雙曲線上,且
,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

短軸長為,離心率的橢圓兩焦點為, 過作直線交橢圓于 兩
點,則的周長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個頂點為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點M、N.
①求橢圓C的方程.
②當⊿AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
設直線與拋物線交于不同兩點A、B,F(xiàn)為拋物線的焦點。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的焦點為,過點的直線交拋物線于,兩點.
①若,求直線的斜率;
②設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是拋物線的焦點,過且斜率為的直線交兩點.設<,若,則λ的值為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為 離心率e= (1)求橢圓的方程。(2)若CD為過左焦點的弦,求的周長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓與直線交于兩點,過原點與線段中點的直線的斜率為,則的值為                  (    )
A.B.  C.D.

查看答案和解析>>

同步練習冊答案