【題目】已知函數(shù)f(x)=x2﹣2(a﹣2)x﹣b2+13.
(1)先后兩次拋擲一枚質(zhì)地均勻的骰子(骰子六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字一次記為a,b,求方程f(x)=0有兩個(gè)不等正根的概率;
(2)如果a∈[2,6],求函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率.
【答案】
(1)解:如果先后拋擲的一枚均勻的骰子所得的向上的點(diǎn)數(shù)記為(a,b),
則基本事件總數(shù)n=6×6=36,
設(shè)事件A表示“f(x)=x2﹣2(a﹣2)x﹣b2+13=0有兩個(gè)不等正根“,
則事件A滿足: ,
滿足事件A的基本事件有:(5,3),(6,1),(6,2),(6,3),共有m=4個(gè),
∴方程f(x)=0有兩個(gè)不等正根的概率p(A)= .
(2)解:設(shè)事件B表示“函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)”,
∵a∈[2,6],f(x)=x2﹣2(a﹣2)x﹣b2+13的對(duì)稱軸為x=a﹣2∈[0,4],區(qū)間長(zhǎng)為4,
f(x)在區(qū)間[2,3]上為增函數(shù)時(shí),只要對(duì)稱軸不在[2,3]上即可,
∴對(duì)稱軸不在[2,3]的區(qū)間長(zhǎng)為3,
根據(jù)幾何概型定義得函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率P(B)=
【解析】1、由題意可得基本事件總數(shù)=36根據(jù)題意二次函數(shù)有兩個(gè)不等的正根利用列舉法求出滿足事件A的基本事件個(gè)數(shù)由此求出方程f(x)=0有兩個(gè)不等正根的概率。
2、由題意可知設(shè)事件B表示“函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)”根據(jù)題意可知f(x)在區(qū)間[2,3]上為增函數(shù)時(shí)只要對(duì)稱軸不在[2,3]上即可根據(jù)幾何概型定義得函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點(diǎn)的( )
A.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了四個(gè)工作日的用電量與當(dāng)天平均氣溫,并制作了對(duì)照表:
氣溫(℃) | 17 | 14 | 11 | ﹣2 |
用電量(度) | 23 | 35 | 39 | 63 |
由表中數(shù)據(jù)得到線性回歸方程 =﹣2x+a,當(dāng)氣溫為﹣5℃時(shí),預(yù)測(cè)用電量約為 ( )
A.38度
B.50度
C.70度
D.30度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程 ;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入﹣成本)
附:回歸直線方程 中, = , = ﹣ ,其中 , 是樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)生物研究性學(xué)習(xí)小組,為了研究平均氣溫與一天內(nèi)某豆類胚芽生長(zhǎng)之間的關(guān)系,他們分別記錄了4月6日至4月11日的平均氣溫x(℃)與該豆類胚芽一天生長(zhǎng)的長(zhǎng)度y(mm),得到如下數(shù)據(jù):
日期 | 4月6日 | 4月7日 | 4月8日 | 4月9日 | 4月10日 | 4月11日 |
平均氣溫x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
一天生長(zhǎng)的長(zhǎng)度y(mm) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組的研究方案是:先從這六組數(shù)據(jù)中選取6日和11日的兩組數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),用剩下的4組數(shù)據(jù)即:7日至10日的四組數(shù)據(jù)求出線性回歸方程.
(1)請(qǐng)按研究方案求出y關(guān)于x的線性回歸方程 = x+ ;
(2)用6日和11日的兩組數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的檢驗(yàn)數(shù)據(jù)的誤差不超過1mm,則認(rèn)為該方程是理想的)
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域?yàn)镸,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域?yàn)镹,向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,若點(diǎn)P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接今年6月6日的“全國愛眼日”,某高中學(xué)校學(xué)生會(huì)隨機(jī)抽取16名學(xué)生,經(jīng)校 醫(yī)用對(duì)數(shù)視力表檢查得到每個(gè)學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如右圖,若視力測(cè)試結(jié)果不低于5.0,則稱為“好視力”,
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這16人中隨機(jī)選取3人,至少有2人是“好視力”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記X表示抽到“好視力”學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動(dòng)點(diǎn)P是在以O(shè)點(diǎn)為圓心,OB為半徑的扇形內(nèi)運(yùn)動(dòng)(含邊界)且∠BOC=90°;設(shè) ,則x+y的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知| |= ,| |=2,向量 與 的夾角為150°.
(1)求:| ﹣2 |;
(2)若( +3λ )⊥( +λ ),求實(shí)數(shù)λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com