3.定義域為R的函數(shù)f(x)滿足以下條件:
(1)對于任意x∈R,f(x)+f(-x)=0;
(2)對于任意x1、x2∈[1,3],當x2>x1時,有f(x2)>f(x1)>0;
則以下不等式不一定成立的是(  )
A.f(2)>f(0)B.f(2)>f(1)C.f(-3)<f(-1)D.f(4)>f(2)

分析 根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關系進行轉化比較即可.

解答 解:由f(x)+f(-x)=0;得f(-x)=-f(x),則函數(shù)f(x)是奇函數(shù);
對于任意x1、x2∈[1,3],當x2>x1時,有f(x2)>f(x1)>0;
則此時函數(shù)f(x)為增函數(shù),在[-3,-1]上是增函數(shù),
A.f(2)>0,f(0)=0,則f(2)>f(0)成立,
B.f(2)>f(1)成立,
C.f(-3)<f(-1)成立,
D.f(4)與f(2)的關系不確定,
故不一定成立的是D,
故選:D

點評 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性的關系進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.春夏季節(jié)是流感多發(fā)期,某地醫(yī)院近30天每天入院治療的人數(shù)依次構成數(shù)列{an},已知a1=1,a2=2,且滿足an+2-an=1+(-1)n(n∈N*),則該醫(yī)院30天入院治療流感的人數(shù)共有255人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cos(x-$\frac{π}{6}$),-1),$\overrightarrow$=(sin(x+$\frac{π}{6}$),$\frac{\sqrt{3}}{2}$)
(1)求f(x)=$\overrightarrow{a}$•$\overrightarrow$的單調(diào)遞增區(qū)間;
(2)設函數(shù)g(x)=f(x)+$\sqrt{3}$cos2x,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.計算:log3$\frac{27}{5}$+log32-log3$\frac{6}{5}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知cosα=-$\frac{4}{5}$,求sinα+tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.不等式x2-3x+1≤0的解集是( 。
A.{x|x≥$\frac{3-\sqrt{5}}{2}$}B.{x|x≤$\frac{3+\sqrt{5}}{2}$}C.{x|$\frac{3-\sqrt{5}}{2}$≤x≤$\frac{3+\sqrt{5}}{2}$}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2x3-6x2+ax+7在區(qū)間(0,2)內(nèi)是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.多項式(1+mx)n+(1+nx)m(m,n∈N+)的展開式中,x2項系數(shù)不小于12mn,那么mn的最小值為( 。
A.4B.3C.16D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若不等式ax2+bx+3>0的解集為(-$\frac{1}{2}$,3),則a,b分別為-2;5.

查看答案和解析>>

同步練習冊答案