精英家教網 > 高中數學 > 題目詳情

【題目】函數的圖象與軸交于點,周期是

(1)求函數解析式,并寫出函數圖象的對稱軸方程和對稱中心;

(2)已知點,點是該函數圖象上一點,點的中點,當 , 時,求的值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)根據周期是可得的值,再由圖象與軸交于點求得的值,從而可得函數解析式,根據余弦函數的性質可求得函數圖象的對稱軸方程和對稱中心;(2) 的中點,點,利用中點坐標公式求出的坐標,點是該函數圖象上一點,代入函數解析式,化簡,根據求解的值.

試題解析(1)由題意,周期是π,即

由圖象與y軸交于點(0,),∴,可得

∵0≤φ,

得函數解析式

,可得對稱軸方程為,(kZ)

,可得對稱中心坐標為(,0),(kZ)

(2)QPA的中點, A,P的坐標為,

,可得P的坐標為,

P是該函數圖象上一點,

,

整理可得:,

x0,∴

,

解得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PA平面ABCDAB=4,BC=3,AD=5,∠DAB=∠ABC=90°,ECD的中點.

(1)證明:CD平面PAE;

(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐PABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據報道,某公司的32名職工的月工資(單位:元)如下:

職務

董事長

副董事長

董事

總經理

經理

管理

職員

人數

1

1

2

1

5

3

20

工資

5 500

5 000

3 500

3 000

2 500

2 000

1 500

(1)求該公司職工工資的平均數、中位數、眾數.(精確到1元)

(2)假設副董事長的工資從5 000元提升到20 000元,董事長的工資從5 500元提升到30 000元,那么新的平均數、中位數、眾數分別是多少?(精確到1元)

(3)你認為哪個統(tǒng)計量更能反映這個公司員工的工資水平?結合此問題談一談你的看法.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質量為一級;35微克/立方米~75微克/立方米之間空氣質量為二級;75微克/立方米及其以上空氣質量為超標.

某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數據中隨機抽取6天的數據作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數據中隨機抽出2,

(1)求恰有一天空氣質量超標的概率;

(2)求至多有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名.某果農選取一片山地種植砂糖橘,收獲時,該果農隨機選取果樹20株作為樣本測量它們每一株的果實產量(單位:kg),獲得的所有數據按照區(qū)間(40,45],(45,50],(50,55],(55,60]進行分組,得到頻率分布直方圖如圖所示.已知樣本中產量在區(qū)間(45,50]上的果樹株數是產量在區(qū)間(50,60]上的果樹株數的.

(1)a,b的值;

(2)從樣本中產量在區(qū)間(50,60]上的果樹里隨機抽取兩株,求產量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1 ,(t為參數)曲線C2 +y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換y′=yx,后得到曲線C′.求曲線C′的普通方程,并寫出它的參數方程;
(2)若C1上的點P對應的參數為t= ,Q為C′上的動點,求PQ中點M到直線C3 (t為參數)的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著網絡的發(fā)展,人們可以在網絡上購物、玩游戲、聊天、導航等,所以人們對上網流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結果如表.

組號

年齡

訪談人數

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應分別抽取多少人?
(Ⅱ)若從第5組的被調查者訪談人中隨機選取2人進行追蹤調查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數據填寫下面2×2列聯表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關?

年齡不低于48歲的人數

年齡低于48歲的人數

合計

愿意使用的人數

不愿意使用的人數

合計

參考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可歸納出對任意角度θ都成立的一個等式,并予以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽.經過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數學期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

同步練習冊答案