【題目】函數的圖象與軸交于點,周期是.
(1)求函數解析式,并寫出函數圖象的對稱軸方程和對稱中心;
(2)已知點,點是該函數圖象上一點,點是的中點,當 , 時,求的值.
【答案】(1)見解析;(2)或.
【解析】試題分析:(1)根據周期是可得的值,再由圖象與軸交于點求得的值,從而可得函數解析式,根據余弦函數的性質可求得函數圖象的對稱軸方程和對稱中心;(2)點 是的中點,點,利用中點坐標公式求出的坐標,點是該函數圖象上一點,代入函數解析式,化簡,根據,求解的值.
試題解析:(1)由題意,周期是π,即.
由圖象與y軸交于點(0,),∴,可得,
∵0≤φ≤,
得函數解析式.
由,可得對稱軸方程為,(k∈Z)
由,可得對稱中心坐標為(,0),(k∈Z)
(2)點Q是PA的中點, A,∴P的坐標為,
由,可得P的坐標為,
又∵點P是該函數圖象上一點,
∴,
整理可得:,
∵x0∈,∴,
故或,
解得或.
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據報道,某公司的32名職工的月工資(單位:元)如下:
職務 | 董事長 | 副董事長 | 董事 | 總經理 | 經理 | 管理 | 職員 |
人數 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求該公司職工工資的平均數、中位數、眾數.(精確到1元)
(2)假設副董事長的工資從5 000元提升到20 000元,董事長的工資從5 500元提升到30 000元,那么新的平均數、中位數、眾數分別是多少?(精確到1元)
(3)你認為哪個統(tǒng)計量更能反映這個公司員工的工資水平?結合此問題談一談你的看法.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米及其以上空氣質量為超標.
某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數據中隨機抽取6天的數據作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數據中隨機抽出2天,
(1)求恰有一天空氣質量超標的概率;
(2)求至多有一天空氣質量超標的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名.某果農選取一片山地種植砂糖橘,收獲時,該果農隨機選取果樹20株作為樣本測量它們每一株的果實產量(單位:kg),獲得的所有數據按照區(qū)間(40,45],(45,50],(50,55],(55,60]進行分組,得到頻率分布直方圖如圖所示.已知樣本中產量在區(qū)間(45,50]上的果樹株數是產量在區(qū)間(50,60]上的果樹株數的倍.
(1)求a,b的值;
(2)從樣本中產量在區(qū)間(50,60]上的果樹里隨機抽取兩株,求產量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1: ,(t為參數)曲線C2: +y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換y′=yx,后得到曲線C′.求曲線C′的普通方程,并寫出它的參數方程;
(2)若C1上的點P對應的參數為t= ,Q為C′上的動點,求PQ中點M到直線C3: (t為參數)的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的發(fā)展,人們可以在網絡上購物、玩游戲、聊天、導航等,所以人們對上網流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結果如表.
組號 | 年齡 | 訪談人數 | 愿意使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應分別抽取多少人?
(Ⅱ)若從第5組的被調查者訪談人中隨機選取2人進行追蹤調查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數據填寫下面2×2列聯表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關?
年齡不低于48歲的人數 | 年齡低于48歲的人數 | 合計 | |
愿意使用的人數 | |||
不愿意使用的人數 | |||
合計 |
參考公式: ,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可歸納出對任意角度θ都成立的一個等式,并予以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽.經過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數學期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com