2.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}-x-3,x>1}\end{array}\right.$,則f($\frac{1}{f(3)}$)的值為( 。
A.$\frac{15}{16}$B.-$\frac{27}{16}$C.$\frac{8}{9}$D.-$\frac{8}{9}$

分析 由分段函數(shù)定義先求出f(3),由此能求出f($\frac{1}{f(3)}$)的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}-x-3,x>1}\end{array}\right.$,
∴f(3)=9-3-3=3,
f($\frac{1}{f(3)}$)=f($\frac{1}{3}$)=1-($\frac{1}{3}$)2=$\frac{8}{9}$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.一個算法的程序框圖如圖所示,該程序輸出的結(jié)果為( 。
A.$\frac{10}{11}$B.$\frac{5}{6}$C.$\frac{5}{11}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)i是虛數(shù)單位,若復數(shù)$\frac{5}{i-2}$的共軛復數(shù)為z,則|z|=( 。
A.i+2B.i-2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在一次解題比賽中,甲、乙兩組各四名同學答對題目數(shù)如莖葉圖.

(1)當X=8,求乙組同學答對題目數(shù)的平均數(shù)和方差;
(2)當X=9,用抽簽的方法分別從甲、乙兩組各選取一名同學,記事件A為這兩名同學答對題目數(shù)一樣多,求事件A的概率.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{n}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若10x=2,10y=3,則103x-y=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復數(shù)$\frac{a+3i}{1-2i}$是實數(shù)(a∈R,i為虛數(shù)單位),則實數(shù)a的值為(  )
A.$\frac{3}{2}$B.-6C.6D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.假如由數(shù)據(jù)(3.1,2.9),(4.5,3.7),(5.6,6),(5.8,6.2),(6.0,7.4),(8.6,9.8)可以得出線性回歸方程y=a+bx,則該直線經(jīng)過的定點是以上點中的(5.6,6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x+a
(1)當a=-$\frac{3}{2}$時,求函數(shù)y=f(x)圖象上在點(3,f(3))處的切線方程;
(2)若方程f(x)=0有三個不等實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD=$\sqrt{2}$,AB=AC.
(1)證明:AD⊥CE;
(2)設(shè)CE與平面ABE所成的角為45°,求二面角C-AD-E的余弦值.

查看答案和解析>>

同步練習冊答案