13.設i是虛數(shù)單位,若復數(shù)$\frac{5}{i-2}$的共軛復數(shù)為z,則|z|=(  )
A.i+2B.i-2C.$\sqrt{5}$D.5

分析 直接由復數(shù)代數(shù)形式的乘除運算化簡復數(shù)$\frac{5}{i-2}$,求出復數(shù)$\frac{5}{i-2}$的共軛復數(shù)z,再由復數(shù)求模公式計算得答案.

解答 解:∵$\frac{5}{i-2}$=$\frac{5(-2-i)}{(-2+i)(-2-i)}=\frac{-10-5i}{5}=-2-i$,
∴復數(shù)$\frac{5}{i-2}$的共軛復數(shù)z=-2+i.
則|z|=$\sqrt{(-2)^{2}+{1}^{2}}=\sqrt{5}$.
故選:C.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{OA}$=(4,3),$\overrightarrow{OB}$=(2,-1),O為坐標原點,P是直線AB上一點.
(Ⅰ)若點P是線段AB的中點,求向量$\overrightarrow{OA}$與向量$\overrightarrow{OP}$夾角θ的余弦值;
(Ⅱ)若點P在線段AB的延長線上,且|${\overrightarrow{AP}}$|=$\frac{3}{2}$|${\overrightarrow{PB}}$|,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某車間生產甲、乙兩種產品.已知生產甲產品1桶需要A原料1千克、B原料2千克;生產乙產品1桶需要A原料3千克、B原料1千克.生產計劃中規(guī)定每天消耗的A原料不超過21千克、B原料不超過12千克.每桶甲產品的利潤是300元,每桶乙產品的利潤是400元,每天生產甲、乙產品各多少桶可以獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x),g(x)分別是定義域為R奇函數(shù)和偶函數(shù),且f(x)-g(x)=2x-3x+1,則f(2)+g(2)=$-\frac{29}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設{an}是公比為正整數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1a2a3=64,b1+b2+b3=-42,6a1+b1=2a3+b3=0.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設pn=$\left\{\begin{array}{l}{a_n},n=2k-1,k∈{N^*}\\{b_n},n=2k,k∈{N^*}\end{array}$,數(shù)列{pn}的前n項和為Sn
①試求最小的正整數(shù)n0,使得當n≥n0時,都有S2n>0成立;
②是否存在正整數(shù)m,n(m<n),使得Sm=Sn成立?若存在,請求出所有滿足條件的m,n;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(1)求證:BC⊥平面PAC;
(2)若M為線段PA的中點,且過C,D,M三點的平面與線段PB交于點N,確定點N的位置,說明理由;并求AN與平面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}是等差數(shù)列,且a1+a5+a9=21,則a4+a6=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}-x-3,x>1}\end{array}\right.$,則f($\frac{1}{f(3)}$)的值為(  )
A.$\frac{15}{16}$B.-$\frac{27}{16}$C.$\frac{8}{9}$D.-$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=DC,求異面直線PA,BC所成的角;
(2)求PB與平面PDC所成角大小;
(3)求二面角D-PB-C的正切值.

查看答案和解析>>

同步練習冊答案