在平面直角坐標系xOy中,橢圓E的中心為原點,焦點F1,F(xiàn)2在y軸上,離心率為
3
3
.過F1的直線l交E于A,B兩點,且△ABF2的周長為4
3

(1)求橢圓E的方程;
(2)過圓O:x2+y2=5上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證兩切線斜率之積為定值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)由題意設出橢圓方程,結(jié)合△ABF2的周長為4
3
求得長半軸長,再由離心率及隱含條件即可求得短半軸長,則橢圓方程可求;
(2)設點P坐標與過點P的橢圓E的切線的方程,聯(lián)立切線方程和橢圓方程,化為關于x的一元二次方程后由判別式等于0得到關于切線斜率k的方程,再由根與系數(shù)的關系證得答案.
解答: (1)解:設橢圓E的方程為
y2
a2
+
x2
b2
=1
(a>b>0),
∵AB過F1且A,B在橢圓上,
則△ABF2的周長為|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4
3

故a=
3

又離心率e=
c
a
=
3
3
,∴c=1,b2=a2-c2=2.
故橢圓E的方程為
y2
3
+
x2
2
=1
;
(2)證明:設點P(x0,y0),過點P的橢圓E的切線l0的方程為y-y0=k(x-x0).
聯(lián)立
y-y0=k(x-x0)
y2
3
+
x2
2
=1
,可得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y0)2-6=0
∵l0與橢圓E相切,故△=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y0)2-6]=0.
整理可得(2-x02)k2+2kx0y0-(y02-3)=0
設滿足題意的橢圓E的兩條切線的斜率分別為k1,k2,則k1k2=-
y02-3
2-x02

因點P在圓O上,∴x02+y02=5,
k1k2=-
5-x02-3
2-x02
=-1

故兩條切線的斜率之積為常數(shù)-1.
點評:本題主要考查橢圓的定義和直線與曲線的相切問題,解決此類問題的必須熟悉曲線的定義和曲線的圖形特征,這也是高考?嫉闹R點,考查了數(shù)學轉(zhuǎn)化思想方法,是壓軸題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+ax+2-a.若函數(shù)的圖象總是在y=2x的上方,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:x
1
3
+y
1
3
=1為軸對稱圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線兩焦點F1,F(xiàn)2,其中F1y=-
1
4
(x+1)2+1
的焦點,兩點A (-3,2)B (1,2)都在雙曲線上,
(1)求點F1的坐標;
(2)求點F2的軌跡方程;
(3)若直線y=x+t與F2的軌跡方程有且只有一個公共點,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列正確結(jié)論的序號是
 

①連續(xù)函數(shù)f(x)在區(qū)間(a,b)上有零點的充要條件為f(a)•f(b)<0;
②若函數(shù)y=f(x)的圖象在點M(1,f(1))處的切線方程是y=
1
2
x+2,則f(1)+f′(1)=3;
③對?x>0,不等式2x+
1
2x
-a>0恒成立,則實數(shù)a的取值范圍為(-∞,2);
④若f(x)=x5+x4+x3+2x+1,則f(2)的值用二進制表示為111101.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為a的菱形ABCD中,∠ABC=120°,PC⊥平面ABCD,E是PA中點,求E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐P-ABCD的棱長都相等,側(cè)棱PB、PD的中點分別為M、N,則截面AMN與底面ABCD所成的二面角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(x,y)是橢圓x2+
y2
4
=1上的一個動點,則x2+y2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的是某單位的男職工進行健康體檢時的體重情況的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24,那么該單位共有男職工的人數(shù)為(  )
A、150B、120
C、48D、96

查看答案和解析>>

同步練習冊答案