1.已知命題p:?x∈(-2,2),|x-1|+|x+2|≥6,則下列敘述正確的是( 。
A.¬p為:?x∈(-2,2),|x-1|+|x+2|<6B.¬p為:?x∈(-2,2),|x-1|+|x+2|≥6
C.¬p為:?x∈(-∞,-2]∪[2,+∞),|x-1|+|x+2|<6D.¬p為真命題

分析 由已知中的原命題,結合特稱命題否定的定義,可得¬p.再由絕對值三角不等式,可得答案.

解答 解:∵命題p:?x∈(-2,2),|x-1|+|x+2|≥6,
∴¬p為:?x∈(-2,2),|x-1|+|x+2|<6,
故A,B,C全錯誤;
根據(jù)|x-1|+|x+2|≥|(x-1)+(-x-2)|=3,
故¬p為真命題,
故D正確;
故選:D

點評 本題考查的知識點是特稱命題的否定,絕對值三角不等式,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知平面向量$\overrightarrow{AB}$=(1,y),$\overrightarrow{AC}$=(2,-1),且$\overrightarrow{AB}$$•\overrightarrow{AC}$=0,則3$\overrightarrow{AB}$-2$\overrightarrow{AC}$=(  )
A.(8,1)B.(8,3)C.(-1,8)D.(7,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用符號?x>表示.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$時,數(shù)列{an}通項公式為an=$\sqrt{2}$-1;
(Ⅱ)當a>$\frac{1}{2}$時,對任意n∈N*都有an=a,則a的值為$\frac{\sqrt{5}-1}{2}$ 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=lnx的圖象在點(1,0)處的切線方程是x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知sinα•cosα=$\frac{1}{8}$,且0<α<$\frac{π}{4}$,則sinα-cosα=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.-17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F(c,0),圓F:(x-c)2+y2=c2,直線l與雙曲線C的一條漸近線垂直且在x軸上的截距為$\frac{2}{3}$a,若圓F被直線l所截得的弦長為$\frac{4\sqrt{2}}{3}$c,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$若f(a)=f(b)=c,f′(b)<0,則a,b,c的大小關系是b>a>c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調遞減區(qū)間為(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分別是的AB,BB1的中點.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

同步練習冊答案