【題目】在中,,,所對的邊分別為,,,過作直線與邊相交于點,,.當(dāng)直線時,值為;當(dāng)為邊的中點時,值為.當(dāng),變化時,記(即、中較大的數(shù)),則的最小值為( )
A.B.C.D.1
【答案】C
【解析】
當(dāng)直線時,由直角三角形的勾股定理和等面積法,可得出, ,再由基本不等式可得出,從而得出M的范圍.當(dāng)為邊的中點時,由直角三角形的斜邊上的中線為斜邊的一半和勾股定理可得,,由基本不等式可得出,從而得出的范圍,可得選項.
當(dāng)直線時,因為,,所以,由等面積法得,
因為有(當(dāng)且僅當(dāng)時,取等號),即,所以,
所以(當(dāng)且僅當(dāng)時,取等號),
當(dāng)為邊的中點時,因為,,所以,,
因為有(當(dāng)且僅當(dāng)時,取等號),即,所以,
所以(當(dāng)且僅當(dāng)時,取等號),
當(dāng),變化時,記(即、中較大的數(shù)),則的最小值為(此時,);
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求(為坐標(biāo)原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)的圖像上存在兩點,使得函數(shù)的圖像在這兩點處的切線互相垂直,則稱具有性質(zhì).下列函數(shù)中具有性質(zhì)的是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點,曲線的參數(shù)方程為 (為參數(shù)).
(Ⅰ)求曲線上的點到直線的距離的最大值;
(Ⅱ)過點與直線平行的直線與曲線 交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其最小正周期為.
(1)求的表達(dá)式;
(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地植被面積 (公頃)與當(dāng)?shù)貧鉁叵陆档亩葦?shù)()之間有如下的對應(yīng)數(shù)據(jù):
(公頃) | 20 | 40 | 50 | 60 | 80 |
() | 3 | 4 | 4 | 4 | 5 |
(1)請用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少?
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點,點在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com