【題目】已知橢圓: 的離心率為,橢圓的四個頂點(diǎn)圍成的四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線與橢圓交于, 兩點(diǎn), 的中點(diǎn)在圓上,求(為坐標(biāo)原點(diǎn))面積的最大值.
【答案】(Ⅰ).
(Ⅱ)1.
【解析】試題分析:(Ⅰ)由題意知, ,得, ,代入橢圓的方程,再由橢圓的四個頂點(diǎn)圍成的四邊形的面積得,求得的值,即可得到橢圓的方程;
(Ⅱ)當(dāng)直線的斜率不存在時,得到,
當(dāng)直線的斜率存在時,設(shè): ,聯(lián)立方程組,求得,求得中點(diǎn)的坐標(biāo),代入圓的方程,得,再由弦長公式和點(diǎn)到直線的距離公式,即可得到的表達(dá)式,即可求解面積的最大值.
試題解析:
(Ⅰ)由題意知,得, ,
所以,
由橢圓的四個頂點(diǎn)圍成的四邊形的面積為4,得,
所以, ,橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)當(dāng)直線的斜率不存在時,
令,得, ,
當(dāng)直線的斜率存在時,設(shè): , , , ,
由,得,
則, ,
所以, ,
將代入,得,
又因為 ,
原點(diǎn)到直線的距離,
所以
.
當(dāng)且僅當(dāng),即時取等號.
綜上所述, 面積的最大值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.
(1)到A、B兩點(diǎn)距離相等的點(diǎn)的集合
(2)滿足不等式的的集合
(3)全體偶數(shù)
(4)被5除余1的數(shù)
(5)20以內(nèi)的質(zhì)數(shù)
(6)
(7)方程的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點(diǎn)是曲線上一點(diǎn),,求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?ǎ◥蹏、富強(qiáng)福、和諧福、友善福,敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:
(1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?
(2)計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);
(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒樱摯髮W(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
參考公式: .
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域為,求實數(shù)的取值范圍;
⑵當(dāng),求函數(shù)的最小值;
⑶是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中(圖1),, , ,過、分別作的垂線,垂足分別為、,已知, ,將梯形沿、同側(cè)折起,使得, ,得空間幾何體(圖2).
(1)證明: 平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】底面為菱形且側(cè)棱垂直于底面的四棱柱中, , 分別是, 的中點(diǎn),過點(diǎn), , , 的平面截直四棱柱,得到平面四邊形, 為的中點(diǎn),且,當(dāng)截面的面積取最大值時, 的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,所對的邊分別為,,,過作直線與邊相交于點(diǎn),,.當(dāng)直線時,值為;當(dāng)為邊的中點(diǎn)時,值為.當(dāng),變化時,記(即、中較大的數(shù)),則的最小值為( )
A.B.C.D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com