11.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{5-5i}{1-2i}$的共軛復(fù)數(shù)為(  )
A.3+iB.-3+iC.-3-iD.3-i

分析 直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.

解答 解:復(fù)數(shù)$\frac{5-5i}{1-2i}$=$\frac{(5-5i)(1+2i)}{(1-2i)(1+2i)}$=(1-i)(1+2i)=3+i.
復(fù)數(shù)$\frac{5-5i}{1-2i}$的共軛復(fù)數(shù)為:3-i.
故選:D.

點評 本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x-2sinx(x$∈[0,\frac{π}{2}]$),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)無窮數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$n2+n(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求滿足S${\;}_{{k}^{2}}$=(Sk2的正整數(shù)k;
(3)求出所有的無窮數(shù)列{an},使得對于一切正整數(shù)k都有S${\;}_{{k}^{2}}$=(Sk2成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復(fù)數(shù)z=1-i,則$\frac{{z}^{2}-2z}{z-1}$的模是(  )
A.2iB.2C.-2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)集合A={x|-1≤x≤2},B={x|(x-a)[x-(a+2)]≤0}.
(1)當a=1時,求A∪B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線y=2x-5在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某學校對高三學生一次模擬考試的數(shù)學成績進行分析,隨機抽取了部分學生的成績,得到如圖所示的成績頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖估計這次考試全校學生數(shù)學成績的眾數(shù)、中位數(shù)和平均值;
(Ⅱ)若成績不低于80分為優(yōu)秀成績,視頻率為概率,從全校學生中有放回的任選3名學生,用變量ξ表示3名學生中獲得優(yōu)秀成績的人數(shù),求變量ξ的分布列及數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若兩個平面內(nèi)分別有一條直線,這兩條直線互相平行,則這兩個平面的公共點個數(shù)( 。
A.有限個B.無限個C.沒有D.沒有或無限個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+2ln(1-x)(a為常數(shù)).
(1)若f(x)在x=-1處有極值,求a的值并判斷x=-1是極大值點還是極小值點;
(2)若f(x)在[-3,-2]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案