分析 (Ⅰ)由頻率分布直方圖得[70,80)對應(yīng)的小矩形最高,能出眾數(shù),由頻率分布直方圖的性質(zhì)能求出中位數(shù)和綜合素質(zhì)成績的平均值.
(Ⅱ)由頻率分布直方圖知優(yōu)秀率為0.3,由題意知ξ~B(3,0.3),由此能求出ξ的分布列和E(ξ).
解答 解:(Ⅰ)由頻率分布直方圖得[70,80)對應(yīng)的小矩形最高,
∴眾數(shù)為:$\frac{70+80}{2}$=75,
∵[50,70)的頻率為(0.012+0.018)×10=0.3,
[70,80)的頻率為0.04×10=0.4,
∴中位數(shù)為:70+$\frac{0.5-0.3}{0.4}×10$=75,
平均值為:55×0.12+65×0.18+75×0.40+85×0.22+95×0.08=74.6
所以綜合素質(zhì)成績的平均值為74.6. …(4分)
(Ⅱ)由頻率分布直方圖知優(yōu)秀率為10×(0.008+0.022)=0.3,
由題意知ξ~B(3,0.3),$P(ξ=k)=C_3^k{(0.3)^k}{(0.7)^{3-k}}$,…(6分)
$P(ξ=0)=C_3^0{(0.3)^0}{(0.7)^3}=0.343$,
$P(ξ=1)=C_3^1{(0.3)^1}{(0.7)^2}=0.441$,
$P(ξ=2)=C_3^2{(0.3)^2}{(0.7)^1}=0.189$,
$P(ξ=3)=C_3^3{(0.3)^3}{(0.7)^0}=0.027$…(10分)
故ξ的分布列為
P | 0 | 1 | 2 | 3 |
ξ | 0.343 | 0.441 | 0.189 | 0.027 |
點評 本題考查頻率分布直方圖的性質(zhì)的應(yīng)用,考查離散型隨機變量的分布列及數(shù)學期望的求法,是中檔題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3+i | B. | -3+i | C. | -3-i | D. | 3-i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com