【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=( )
A.0
B.100
C.150
D.200
【答案】D
【解析】解:∵函數(shù)f(x)=Acos2(ωx+φ)+1=A +1= cos(2ωx+2φ)+ 的最大值為3,
∴ + =3,∴A=2.
f(x)的圖象在y軸上的截距為2,可得cos2φ+2=2,即 cos2φ=0,
∴可取φ= .
再根據(jù)它的圖象相鄰兩對稱軸間的距離為1,可得它的周期為 =2,求得ω= ,
∴f(x)=cos(πx+ )+2=sinπx+2,
故f(1)=2,f(2)=2,f(3)=2,…,(100)=2,
故f(1)+f(2)+f(3)+…+f(100)=200,
所以答案是:D.
【考點精析】通過靈活運用二倍角的余弦公式,掌握二倍角的余弦公式:即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,,平面,是的中點.
(1)求證:平面平面;
(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.
問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)過拋物線 的焦點 的直線 交拋物線于點 ,若以 為直徑的圓過點 ,且與 軸交于 , 兩點,則 ( )
A.3
B.2
C.-3
D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利民中學(xué)為了了解該校高一年級學(xué)生的數(shù)學(xué)成績,從高一年級期中考試成績中抽出100名學(xué)生的成績,由成績得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學(xué)生成績的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(Ⅰ)補全頻率分布直方圖;
(Ⅱ)估計本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時,有成立.
(Ⅰ)判斷在上的單調(diào)性,并證明;
(Ⅱ)解不等式;
(Ⅲ)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤最高?
(2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;
(3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
相關(guān)公式: , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com