【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時, .給出以下命題:

①當x<0時,f(x)ex(x1);

②函數(shù)f(x)有五個零點;

③若關(guān)于x的方程f(x)m有解,則實數(shù)m的取值范圍是f(2)≤mf(2);

④對x1x2R,|f(x2)f(x1)|<2恒成立.

其中,正確命題的序號是________

【答案】①④

【解析】時, ,所以,所以,故①正確;當時, ,令,所以,所以上單調(diào)遞減,在上單調(diào)遞增,而在上, ,在上, ,所以上僅有一個零點,由對稱性可知, 上也有一個零點,又,故該函數(shù)有三個零點,故②錯誤;因為當時, 上單調(diào)遞減,在上單調(diào)遞增,且當時, ,當時, ,所以當時, ,即,由對稱性可知,當時, ,又,故當時, 若關(guān)于的方程有解,則,且對, 恒成立,故③錯誤,④正確,故答案為①④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知p、q為常數(shù), ),又 , .

1)求p、q的值;

2)求數(shù)列的通項公式;

3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.

1)求橢圓的方程;

2)過橢圓的右頂點作斜率為的直線交橢圓于另一點連結(jié)并延長交橢圓于點,的面積取得最大值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用,出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

-5

0

(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)exax2(xR),e2.718 28…為自然對數(shù)的底數(shù).

(1)求函數(shù)f(x)在點P(0,1)處的切線方程;

(2)若函數(shù)f(x)R上的單調(diào)遞增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學準備參加考試,在正式考試之前進行了十次模擬測試,測試成績?nèi)缦拢?/span>

甲:137121,131,120,129,119,132,123,125,133

乙:110,130,147,127,146114,126,110,144146

1畫出甲、乙兩人成績的莖葉圖,求出甲同學成績的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學平均成績以及兩位同學成績的中位數(shù)的大小關(guān)系的結(jié)論;

2規(guī)定成績超過127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數(shù)的分布列和數(shù)學期望.

(注:方差,其中的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為 為參數(shù)),曲線的極坐標方程為.

(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;

(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)圖象上不同兩點 處切線的斜率分別是, ,規(guī)定為線段的長度)叫做曲線在點之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點的橫坐標分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);

③設點 是拋物線上不同的兩點,則;

④設曲線是自然對數(shù)的底數(shù))上不同兩點, ,且,若恒成立,則實數(shù)的取值范圍是

其中真命題的序號為__________.(將所有真命題的序號都填上)

查看答案和解析>>

同步練習冊答案