7.化簡:$\frac{1-tan9°}{sin9°(1-2si{n}^{2}9°)}$.

分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,化簡所給的式子,可的結(jié)果.

解答 解:$\frac{1-tan9°}{sin9°(1-2si{n}^{2}9°)}$=$\frac{cos9°-sin9°}{sin9°cos9°•cos18°}$=$\frac{2(cos9°-sin9°)}{sin18°{•(cos}^{2}9°{-sin}^{2}9°)}$=$\frac{2}{sin18°(cos9°+sin9°)}$
=$\frac{2}{\sqrt{2}•sin18°•cos(45°-9°)}$=$\frac{2cos18°}{\frac{\sqrt{2}}{4}sin72°}$=$\frac{2}{\frac{\sqrt{2}}{4}}$=4$\sqrt{2}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.Sn為數(shù)列{an}的前n項和,已知an>0,${a}_{n}^{2}$+an=2Sn+2(n∈N*
(1)求證數(shù)列{an}是等差數(shù)列并求其通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,記{bn}前n項和為Tn,若4032(n+2)Tn<λ(n+1)對任意的n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}+1,x≤0}\\{lo{g}_{3}x+ax,x>0}\end{array}\right.$,若f(f(-1))>4a,則實數(shù)a的取值范圍為a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C的圓心在x軸正半軸上,點(0,$\sqrt{5}$)圓C上,且圓心到直線2x-y=0的距離為$\frac{4\sqrt{5}}{5}$,則圓C的方程為(x-2)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}的前n項和為Sn,Sm-1=-5,Sm=0,Sm+1=7,則m=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}的前n項和為Sn,若S2=4,an+1=2Sn+1,n∈N*,則a1=1,S5=121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知cos($\frac{3π}{2}$-α)=$\frac{3}{5}$,α是第三象限角,則cosα等于( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{2\sqrt{6}}{5}$D.-$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{sin(-π-α)}$,則f(-$\frac{31π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合A={x|3x<1},B={x|0≤x≤1},則(∁RA)∩B=(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

同步練習(xí)冊答案