(2012•普陀區(qū)一模)若一個(gè)底面邊長為
3
2
,側(cè)棱長為
6
的正六棱柱的所有頂點(diǎn)都在一個(gè)球面上,則此球的體積為
2
2
分析:作出六棱柱的最大對(duì)角面與外截球的截面,設(shè)正六棱柱的上下底面中心分別為O1,O2,球心為O,一個(gè)頂點(diǎn)為A,如右圖.可根據(jù)題中數(shù)據(jù)結(jié)合勾股定理算出球的半徑OA,再用球的體積公式即可得到外接球的體積.
解答:解:作出六棱柱的最大對(duì)角面與外截球的截面,如右圖,則該截面矩形分別以底面外接圓直徑和六棱柱高為兩邊,
設(shè)球心為O,正六棱柱的上下底面中心分別為O1,O2,則球心O是O1,O2的中點(diǎn).
∵正六棱柱底面邊長為
3
2
,側(cè)棱長為
6

∴Rt△AO1O中,AO1=
3
2
,O1O=
6
2
,可得AO=
AO12+O1O2
=
3
2

因此,該球的體積為V=
4
3
π•(
3
2
3=
2

故答案為:
2
點(diǎn)評(píng):本題給出一個(gè)正六棱柱,求它的外接球的體積,著重考查了球的內(nèi)接多面體和球體積公式等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)
e
1
e
2
是兩個(gè)不共線的向量,已知
AB
=2
e
1
+k
e
2
,
CB
=
e
1
+3
e
2
CD
=2
e
1
-
e
2
,且A,B,D三點(diǎn)共線,則實(shí)數(shù)k=
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)設(shè)全集為R,集M={x|
x2
4
+y2=1
},N={x|
x-3
x+1
≤0
},則集合{x|(x+
3
2
)
2
+y2=
1
4
}可表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)已知數(shù)列{an}是首項(xiàng)為2的等比數(shù)列,且滿足an+1=pan+2n(n∈N*)
(1)求常數(shù)p的值和數(shù)列{an}的通項(xiàng)公式;
(2)若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、…第3n-2項(xiàng),…,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列{bn},試寫出數(shù)列
{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在正整數(shù)n,使得
Tn+1
Tn
=
11
3
?若存在,試求所有滿足條件的正整數(shù)n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)對(duì)于平面α、β、γ和直線a、b、m、n,下列命題中真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)函數(shù)y=
1
log
1
2
|x-1|
的定義域是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

同步練習(xí)冊答案