【題目】已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范圍.

【答案】
(1)解:函數(shù)f(x)=|x+2|+|x|表示數(shù)軸上的x對應點到﹣2、0對應點的距離之和,

而﹣3和1對應點到﹣2、0對應點的距離之和正好等于4,故不等式f(x)≤4的解集為[﹣3,1].


(2)解:函數(shù)f(x)=|x+2|+|x|表示數(shù)軸上的x對應點到﹣2、0對應點的距離之和,它的最小值為2,.

若對x∈R,恒有f(x)>|3a﹣1|成立,則有2>|3a﹣1|,即﹣2<3a﹣1<2,求得﹣ <a<1,

故a的取值范圍為(﹣ ,1)


【解析】(1)由條件利用絕對值的意義求得不等式f(x)≤4的解集.(2)根據(jù)絕地值的意義求得函數(shù)f(x)=|x+2|+|x|的最小值為2,故有2>|3a﹣1|,由此求得a的范圍.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)求的定義域及其零點;

(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;

(3)設(shè),當時,若對任意,存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,試在AE上確定一點M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M,N兩點.
(1)求k的取值范圍;
(2)請問是否存在實數(shù)k使得 (其中O為坐標原點),如果存在請求出k的值,并求|MN|;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關(guān).

平均車速超過
100km/h人數(shù)

平均車速不超過
100km/h人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計


(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為 ,若每次抽取的結(jié)果是相互獨立的,求 的分布列和數(shù)學期望.
參考公式與數(shù)據(jù): ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, 為線段上的動點,則下列判斷錯誤的是( )

A. 平面 B. 平面

C. D. 三棱錐的體積與點位置有關(guān)

查看答案和解析>>

同步練習冊答案