分析 (1)利用概率和為1,真假求解分數(shù)在[120,130)內(nèi)的頻率,然后補全這個頻率分布直方圖;
(2)利用同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,直接求解本次考試的平均分;
(3)利用分層抽樣,求出,[110,120)分數(shù)段的人數(shù),[120,130)分數(shù)段的人數(shù).在[110,120)分數(shù)段內(nèi)抽取2人,并分別記為m,n;在[120,130)分數(shù)段內(nèi)抽取4人并分別記為a,b,c,d;列出所有的基本事件,求出事件A至多有1人在分數(shù)段[120,130)內(nèi)包含的基本事件,然后求解概率即可.
解答 (本小題滿分12分)
解:(1)分數(shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.
$\frac{頻率}{組距}$=$\frac{0.3}{10}$=0.03,補全后的直方圖如下:
(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.
(3)由題意,[110,120)分數(shù)段的人數(shù)為:60×0.15=9人,
[120,130)分數(shù)段的人數(shù)為:60×0.3=18人.
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內(nèi)抽取2人,并分別記為m,n;
在[120,130)分數(shù)段內(nèi)抽取4人并分別記為a,b,c,d;
設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內(nèi)”為事件A,
則基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),
(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15種.
事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),
(n,b),(n,c),(n,d)共9種.
∴P(A)=$\frac{9}{15}$=$\frac{3}{5}$
點評 本題考查頻率分布直方圖以及古典概型概率的求法,考查分析問題解決問題的能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | B. | (log2x)′=$\frac{1}{xln2}$ | ||
C. | (cosx)′=sinx | D. | ($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 14 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組號 | 重量分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | ① | 0.350 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185] | 10 | 0.100 |
合計 | 100 | 1.00 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com