如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點(diǎn).

(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.

 

【答案】

(1)通過余弦定理來證明AC⊥A1C,以及結(jié)合題目中的BC⊥A1C來得到證明。

(2)

【解析】

試題分析:解:(1)證明:∵BC⊥側(cè)面AA1C1C,A1C在面AA1C1C內(nèi),∴BC⊥A1C.  2分

在△AA1C中,AC=1,AA1=C1C=2,∠CAA1=,

由余弦定理得A1C2=AC2+-2AC?AA1cos∠CAA1=12+22-2×1×2×cos=3, 

∴A1C=   ∴AC2+A1C2=AA12   ∴AC⊥A1C                 5分

∴A1C⊥平面ABC.                                            6分

(2)由(Ⅰ)知,CA,CA1,CB兩兩垂直

∴如圖,以C為空間坐標(biāo)系的原點(diǎn),分別以CA,CA1,CB所在直線為x,y,z軸建立空間直角坐標(biāo)系,則C(0,0,0),B(0,0,1),A(1,0,0),A1(0,,0)

由此可得D(,0),E(0,,0),=(,-1),=(0,,-1).

設(shè)平面BDE的法向量為=(x,y,z),則有令z=1,則x=0,y=

=(0,,1)          9分

∵A1C⊥平面ABC   ∴=(0,,0)是平面ABC的一個(gè)法向量        10分

    

∴平面BDE與ABC所成銳二面角的余弦值為.       12分

考點(diǎn):二面角的平面角以及線面垂直

點(diǎn)評(píng):主要是考查了空間中線面位置關(guān)系,以及二面角的平面角的求解的綜合運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案