A. | y=2x-2 | B. | y=2x+2 | C. | y=2x-1 | D. | y=2x+1 |
分析 設(shè)切點為(m,m2),求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,由兩直線垂直的條件:斜率之積為-1,可得m=1,可得切線的斜率和切點,運用點斜式方程可得切線的方程.
解答 解:設(shè)切點為(m,m2),
y=x2的導(dǎo)數(shù)為y′=2x,
即有切線的斜率為2m,
由切線與直線x+2y+1=0垂直,可得2m=2,
解得m=1,切點為(1,1),
可得切線的方程為y-1=2(x-1),
即為y=2x-1.
故選:C.
點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,同時考查兩直線垂直的條件:斜率之積為-1,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{6}$ | D. | $\frac{11π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,e) | B. | (e,+∞) | C. | (0,$\frac{1}{e}$) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -20 | B. | 19 | C. | -18 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2\sqrt{3}}{5}$ | B. | $\frac{2\sqrt{3}}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,1) | C. | (-∞,-1)∪(1,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com