分析 求出雙曲線的a,b,c,由條件可得|PF1|,運(yùn)用雙曲線的定義,求得|PF2|,由勾股定理的逆定理可得△PF1F2為斜邊為F1F2的直角三角形,由三角形的面積公式計(jì)算即可得到所求值.
解答 解:雙曲線${x^2}-\frac{y^2}{24}=1$的a=1,b=2$\sqrt{6}$,
可得c=$\sqrt{{a}^{2}+^{2}}$=5,
由$|P{F_1}|=\frac{3}{5}|{F_1}{F_2}|$,可得:
|PF1|=$\frac{3}{5}$×10=6,
由雙曲線的定義可得|PF2|-|PF1|=2a=2,
可得|PF2|=6+2=8,
由|PF2|2+|PF1|2=|F1F2|2,
可得△PF1F2為斜邊為F1F2的直角三角形,
可得△PF1F2的面積是$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}$×6×8=24.
故答案為:24.
點(diǎn)評 本題考查三角形的面積的求法,注意運(yùn)用雙曲線的定義,判斷三角形為直角三角形是解題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=2$\sqrt{3}$x | B. | y2=4$\sqrt{3}$x | C. | y2=4x | D. | y2=6x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<9 | B. | i≤9 | C. | i>9 | D. | i≥9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com