在四棱錐中,//,,,平面.

(1)求證:平面;
(2)求異面直線所成角的余弦值;
(3)設點為線段上一點,且直線與平面所成角的正弦值為,求的值.

(1)見解析(2),(3)

解析試題分析:(1)建立如圖所示坐標系,

寫出坐標,可得坐標,由,.所以平面;(2)由向量的夾角可知異成直線所成角;(3)為線段上一點,設其中可得,由直線與平面所成角的正弦值為,利用與平面的法向量夾角,可得.其中為直線與平面所成角..即 .
試題解析:(1)證明:因為,,所以以為坐標原點,所在的直線分別為軸、軸、軸建立空間直角坐標系,     1分
,,.
所以 ,,
,              2分
所以,
.
所以 ,.
因為 平面,
平面,
所以 平面. 4分
(2) , 5分

異成直線所成角的余弦值 8分
(3)解:設(其中),,直線與平面所成角為.
所以 .所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的多面體中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB//平面DEG;
(2)求證:BDEG;
(3)求二面角C—DF—E的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是直角梯形,∠=90°,,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(1)求二面角的的余弦值;
(2)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,

(1)求異面直線所成角的大;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,的中點,作于點

(1)證明平面;
(2)證明平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2。

(1)求證:BC⊥平面A1DC;
(2)若CD=2,求BE與平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿直線BD將△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求證:C'D平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

)如圖所示,在三棱錐PABC中,ABBC,平面PAC⊥平面ABC,PDAC于點D,AD=1,CD=3,PD.
 
(1)證明:△PBC為直角三角形;
(2)求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四棱錐PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F(xiàn)為PC的中點,AF⊥PB.

(1)求PA的長;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

同步練習冊答案