已知函數(shù)f(x)=
ex,x≥0
-2x,x<0
,則函數(shù)g(x)=f[f(x)]-k(k≥e)的零點(diǎn)個(gè)數(shù)為 ( 。
A、0個(gè)B、1個(gè)
C、2個(gè)D、無(wú)窮多個(gè)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意分析分段函數(shù)在各段上的值域,從而求函數(shù)g(x)=f[f(x)]-k(k≥e)的零點(diǎn)個(gè)數(shù).
解答: 解:當(dāng)x≥0,f(f(x))=f(ex)=eex
當(dāng)x<0,f(f(x))=f(-2x)=e-2x
當(dāng)x≥0,y=eex是增函數(shù),且y≥e;
當(dāng)x<0,y=e-2x是減函數(shù),且y>1.
由f[f(x)]-k=0得f[f(x)]=k,
方程f[f(x)]=k解的個(gè)數(shù)即y=k與y=f[f(x)]的圖象交點(diǎn)的個(gè)數(shù),
結(jié)合圖象得當(dāng)1<k<e有1個(gè)解;
當(dāng)k≥e有2解.
故選C.
點(diǎn)評(píng):本題考查了分段函數(shù)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,則△ABC是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=2sin(x-
π
4
),x∈[0,
π
2
]
則f(x)的最大值為(  )
A、2
B、0
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足線性約束條件
x≥0
y≤x
2x+y+k≤0
,其中 k<0且為常數(shù).
(1)若z=x+3y的最大值為8,則k=
 

(2)在(1)的條件下,設(shè)P(x,y)為相應(yīng)的可行域中任意一點(diǎn),則滿足“x2+y2≤4”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,直線B1D1與平面BDC1的位置關(guān)系是(  )
A、平行
B、垂直
C、相交但不垂直
D、直線B1D1在平面BDC1內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R都有f(x)=f(x+4),當(dāng) x∈(-2,0)時(shí),f(x)=2x,則f(2013)-f(2012)的值為(  )
A、-
1
2
B、
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=log2(-ax+2)在(-∞,2]是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={y|y=-2x,x∈R},B={y|y=x2-3x,x∈R},則A∩∁UB=(  )
A、{x|=
9
4
<x<0}
B、{x|x<-
9
4
}
C、{(1,-2)}
D、{x|x≤-
9
4
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在相同條件下,種植甲、乙兩種水稻各100畝,收獲情況如下:
甲種水稻
畝產(chǎn)量/kg300320330340
畝數(shù)15303520
乙種水稻
畝產(chǎn)量/kg300320330340
畝數(shù)20254015
試運(yùn)用所學(xué)知識(shí)評(píng)價(jià)哪種水稻的質(zhì)量更好.

查看答案和解析>>

同步練習(xí)冊(cè)答案