A. | M>N | B. | M<N | C. | M=N | D. | M和N無關(guān) |
分析 使用同角三角函數(shù)的關(guān)系及二倍角公式化簡M,N,再進行比較.
解答 解:M=$\frac{sin\frac{α}{2}}{cos\frac{α}{2}}•2sin\frac{α}{2}cos\frac{α}{2}+cosα$=2sin2$\frac{α}{2}$+cosα=1-cosα+cosα=1;
∵tan$\frac{π}{4}$=$\frac{2tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=1,∴tan2$\frac{π}{8}$+2tan$\frac{π}{8}$=1.∴N=tan2$\frac{π}{8}$+2tan$\frac{π}{8}$=1.
∴M=N.
故選:C.
點評 本題考查了三角函數(shù)的恒等變換,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}π$ | B. | $\frac{π}{2}$ | C. | $\frac{\sqrt{3}}{2}π$ | D. | $\frac{\sqrt{3}}{4}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com