19.已知命題P:方程x2+kx+4=0有兩個(gè)不相等的負(fù)實(shí)數(shù)根;命題q:過(guò)點(diǎn)(1,2)總可以作兩條直線(xiàn)與圓x2+y2+kx+2y+k2-15=0相切,若p∨q”為真,p∧q為假,求實(shí)數(shù)k的取值范圍.

分析 若p∨q”為真,p∧q為假,則p,q一真一假,進(jìn)而答案.

解答 解:對(duì)于P:$\left\{{\begin{array}{l}{△>0}\\{{x_1}+{x_2}<0}\\{{x_1}{x_2}>0}\end{array}}\right.$,則得k>4(2分)
對(duì)于q:把圓的方程化為標(biāo)準(zhǔn)方程得(x+$\frac{k}{2}$)2+(y+1)2=16-$\frac{3k2}{4}$
所以16-$\frac{3k2}{4}$>0,解得-$\frac{8\sqrt{3}}{3}$<k<$\frac{8\sqrt{3}}{3}$.
由題意知點(diǎn)(1,2)應(yīng)在已知圓的外部,
把點(diǎn)代入圓的方程得1+4+k+4+k2-15>0,
即(k-2)(k+3)>0,解得k>2或k<-3,
則實(shí)數(shù)k的取值范圍是-$\frac{8\sqrt{3}}{3}$<k<-3,或2<k<$\frac{8\sqrt{3}}{3}$.(7分)
若p∨q”為真,p∧q為假,則p,q一真一假
(1)p為真,q為假時(shí),易得k∈(4,+∞).(9分)
(2)p為假,q為真時(shí),易得$k∈(-\frac{8\sqrt{3}}{3},-3)∪(2,4]$(11分)
所以所求實(shí)數(shù)m的取值范圍是$k∈(-\frac{8\sqrt{3}}{3},-3)∪(2,+∞)$(12分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,方程根的個(gè)數(shù),直線(xiàn)與圓的位置關(guān)系等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的通項(xiàng)公式an=2n-1,數(shù)列{bn}滿(mǎn)足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn為數(shù)列{bn}的前n項(xiàng)和.
(I)求Tn;
(II)若對(duì)任意的n∈N*不等式λTn<n+(-1)n恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e為自然對(duì)數(shù)的底數(shù)),則f(f(1))=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函數(shù)y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,將y=f(x)的圖象向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0,$\frac{π}{4}$]內(nèi)的最大值為$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\sqrt{2}$g($\frac{A}{2}$-$\frac{π}{4}$)=-1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知x1,x2,x3,…xn的平均數(shù)為4,標(biāo)準(zhǔn)差為7,則3x1+2,3x2+2,…,3xn+2的平均數(shù)是14;標(biāo)準(zhǔn)差是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=$\frac{x}{x-1}$的圖象是下列圖象中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法錯(cuò)誤的是( 。
A.設(shè)p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù),$q:m≥\frac{4}{3}$,則p是q的必要不充分條件
B.若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則¬p:?x∈R,x2-x+1>0
C.奇函數(shù)f(x)定義域?yàn)镽,且f(x-1)=-f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.四面體ABCD中,AB和CD為對(duì)棱.設(shè)AB=a,CD=b,且異面直線(xiàn)AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ=$\frac{π}{2}$,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當(dāng)θ=$\frac{π}{2}$時(shí),證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖直三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4的正三角形,E、F分別是BC,CC1的中點(diǎn),
(1)證明:平面AEF⊥平面B1BCC1
(2)設(shè)AB的中點(diǎn)為D,∠CA1D=45°,求平面CA1D與平面ABC所成的銳二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案