分析 (1)由圓M的極坐標(biāo)方程為:ρ2-6ρsinθ=-5,利用ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可得直角坐標(biāo)方程.通過配方可得圓心M,半徑r.
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t為參數(shù))化為普通方程,利用點(diǎn)到直線的距離公式可得圓心M (0,3)到直線l的距離d,利用弦長公式即可得出.
解答 解:(1)∵圓M的極坐標(biāo)方程為:ρ2-6ρsinθ=-5.
可得直角坐標(biāo)方程:x2+y2-6y=-5,配方為:x2+(y-3)2=4.
∴圓 M 的直角坐標(biāo)方程為::x2+(y-3)2=4.圓心M(0,3),半徑r=2.
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t為參數(shù))化為普通方程得:3x+4y-3a+4=0,
∵直線l截 圓 M 所 得 弦 長 為2$\sqrt{3}$,
且圓M 的 圓 心 M (0,3)到直線l的距離d=$\frac{|12-3a+4|}{5}$=$\frac{|16-3a|}{5}$.
∴$(\sqrt{3})^{2}$=22-$(\frac{16-3a}{5})^{2}$,
化為:16-3a=±5,
解得a=$\frac{11}{3}$或7.
又a∈Z,∴a=7.
點(diǎn)評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與橢圓相交弦長公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{2}$,+∞) | B. | (-∞,0) | C. | (0,$\frac{3}{2}$] | D. | (0,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com