10.在平面直角坐標(biāo)系xOy和及坐標(biāo)系中,極點(diǎn)與原點(diǎn)重合,極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-t\\ y=2-\sqrt{3}t\end{array}\right.$(t為參數(shù)),曲線C:ρ2-4ρsinθ+2=0.
(Ⅰ)將直線l的方程化為普通方程,將曲線C的方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線交于A,B,求|AB|.

分析 (I)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-t\\ y=2-\sqrt{3}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.曲線C:ρ2-4ρsinθ+2=0,利用ρ2=x2+y2,y=ρsinθ,即可化為直角坐標(biāo)方程.
(II)圓心C到直線l的距離d.利用|AB|=2$\sqrt{{r}^{2}-mb9c43a^{2}}$即可得出.

解答 解:(I)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-t\\ y=2-\sqrt{3}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:$\sqrt{3}$x-y+2-$\sqrt{3}$=0.
曲線C:ρ2-4ρsinθ+2=0,可得直角坐標(biāo)方程:x2+y2-4y+2=0,配方為x2+(y-2)2=2,
可得圓心C(0,2),半徑r=$\sqrt{2}$.
(II)圓心C到直線l的距離d=$\frac{|-2+2-\sqrt{3}|}{2}$=$\frac{\sqrt{3}}{2}$.
∴|AB|=2$\sqrt{(\sqrt{2})^{2}-(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、參數(shù)方程化為普通方程、直線與圓相交弦長(zhǎng)、點(diǎn)到直線的距離公式公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在R上的偶函數(shù)g(x)滿足g(x)+g(2-x)=0,函數(shù)f(x)=$\sqrt{1-{x^2}}$的圖象是g(x)的圖象的一部分.若關(guān)于x的方程g2(x)=a(x+1)2有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{1}{8}$,+∞)B.($\frac{1}{3}$,$\frac{{2\sqrt{2}}}{3}$)C.($\frac{{\sqrt{2}}}{4}$,+∞)D.(2$\sqrt{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+ln(x-a),a∈R.
(Ⅰ)若f(x)有兩個(gè)不同的極值點(diǎn),求a的取值范圍;
(Ⅱ)當(dāng)a≤-2時(shí),令g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表達(dá)式;
(Ⅲ)求證:$\frac{3{n}^{2}+5n}{8{n}^{2}+24n+16}$+ln$\sqrt{n+1}$$<1+\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,是某幾何體的三視圖和直觀圖,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,點(diǎn)P在棱BC上,且AP∥平面CDE.
(Ⅰ)求點(diǎn)P到平面CDE的距離;
(Ⅱ)求二面角A-CD-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且PD=CD=$\frac{\sqrt{2}}{2}$BC,過(guò)棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF;
(2)求異面直線AD與BE所成角的余弦值;
(3)二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)P,點(diǎn)P在平面DEF上的射影點(diǎn)為H.
(1)求證:B、H、D三點(diǎn)共線;
(2)求二面角P-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在四棱錐P-ABCD中,底面ABCD是正方形.側(cè)棱PA⊥底面ABCD.M、N分別為PD、AC的中點(diǎn).
(1)證明:平面PAC⊥平面MND:
2)若直線MN與平面ABCD所成角的余弦值為$\frac{2\sqrt{5}}{5}$.求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,以相同的才長(zhǎng)度單位建立極坐標(biāo)系,設(shè)圓M的極坐標(biāo)方程為:ρ2-6ρsinθ=-5.
(1)求圓M的直角坐標(biāo)方程;
(2)若直線l截圓所得弦長(zhǎng)為2$\sqrt{3}$,求整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知AB為⊙O的一條直徑,點(diǎn)P為圓上異于AB的一點(diǎn),以點(diǎn)P為切點(diǎn)作切線l,使得AC⊥l,BD⊥l,垂足分別為C,D.
(1)求證:PC=PD;
(2)求證:PB平分∠ABD.

查看答案和解析>>

同步練習(xí)冊(cè)答案