(本小題滿分14分)
已知向量,且滿足.
(1)求函數(shù)的解析式;
(2)求函數(shù)的最小正周期、最值及其對應的值;
(3)銳角中,若,且,,求的長.

(1)  ;
(2)函數(shù)的最小正周期,時, 的最大值為
時,的最小值為;(3) 。

解析試題分析:(1)根據(jù)數(shù)量積的坐標表示,由可求出f(x),然后再根據(jù),
求得m值,從而得到f(x)的解析式.
(2)在(1)的基礎(chǔ)可知,所以其周期為,
然后再根據(jù)正弦函數(shù)y=sinx,當時,取得最大值1;當時,取得最小值-1,求出f(x)的最值.
(3)先由,求出A角,再利用余弦定理求出BC.
(1)     
                                            ·······1分
   
                                       ·······3分
                               ·······5分
(2)函數(shù)的最小正周期                                       ·······6分
,即時, 的最大值為,
,即時,的最小值為 ·······8分
(3) 因為 , 即 
                                                   ·······9分
是銳角的內(nèi)角,        ∴                       ······10分
 
由余弦定理得:              ······13分
                                                      ·······14分
考點:本小題以平面向量為知識載體重點考查了三角函數(shù)的周期及最值,三角方程,解三角形.
點評:掌握向量數(shù)量積的坐標表示是求解的突破口,而掌握的周期及最值的求法是求解本題的關(guān)鍵,知道什么情況下適用正弦定理及余弦定理是求解第三問的基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案