分析 通過以A為原點(diǎn),AB為x軸、AD為y軸建系,利用向量的坐標(biāo)形式計(jì)算即可.
解答 解:以A為原點(diǎn),AB為x軸、AD為y軸建系如圖,
∵AB=3,BC=2,
∴A(0,0),B(3,0),C(3,2),
D(0,2),
∵點(diǎn)E為BC的中點(diǎn),
∴E(3,1),
∵點(diǎn)F在CD上,
∴可設(shè)F(x,2),
∴$\overrightarrow{AB}$=(3,0),$\overrightarrow{AF}$=(x,2),
∵$\overrightarrow{AB}$•$\overrightarrow{AF}$=6,
∴3x=6,
解得x=2,
∴F(2,2),
∴$\overrightarrow{BF}$=(-1,2),
∵$\overrightarrow{AE}$=(3,1),
∴$\overrightarrow{AE}$•$\overrightarrow{BF}$=-3+2=-1,
故答案為:-1
點(diǎn)評(píng) 本題考查平面向量數(shù)量積運(yùn)算,考查數(shù)形結(jié)合,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-[x]≥0 | |
B. | x-[x]<1 | |
C. | 令f(x)=x-[x],對任意實(shí)數(shù)x,f(x+1)=f(x)恒成立 | |
D. | 令f(x)=x-[x],對任意實(shí)數(shù)x,f(-x)=f(x)恒成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{4}{13}$ | C. | -$\frac{4}{9}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x${\;}^{\frac{1}{3}}$ | B. | f(x)=sinx | C. | f(x)=cosx | D. | f(x)=log2(x2+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120 | B. | 720 | C. | 1440 | D. | 5040 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com