8.如果直線3ax+y-1=0與直線(1-2a)x+ay+1=0平行.那么a等于$\frac{1}{3}$.

分析 由平行關(guān)系可得a的方程,解方程驗(yàn)證排除重合可得.

解答 解:∵直線3ax+y-1=0與直線(1-2a)x+ay+1=0平行,
∴3a•a=1•(1-2a),解得a=-1或a=$\frac{1}{3}$,
經(jīng)檢驗(yàn)當(dāng)a=-1時(shí),兩直線重合,應(yīng)舍去
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.甲乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲乙下成和棋的概率為(  )
A.70%B.30%C.20%D.50%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)O為坐標(biāo)原點(diǎn),A(2,1),若點(diǎn)B(x,y)滿足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤1}\\{\frac{1}{2}≤x≤1}\\{0≤y≤1}\end{array}\right.$,則$\overrightarrow{OA}•\overrightarrow{OB}$的最大值是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.i是虛數(shù)單位,復(fù)數(shù)2i=z(-1+i),則z的共軛復(fù)數(shù)是( 。
A.-1+iB.-i+1C.i+1D.-i-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓錐的母線長(zhǎng)是10,側(cè)面展開(kāi)圖是半圓,則該圓錐的側(cè)面積為( 。
A.$\frac{100}{3}$πB.100πC.$\frac{50}{3}$πD.50π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是x軸的拋物線經(jīng)過(guò)點(diǎn)M($\frac{1}{2}$,-$\sqrt{2}$).
(I)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l過(guò)點(diǎn)P(1,0),且與拋物線交于不同兩點(diǎn)A,B,若|AB|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)M和N分別是B1D1和B1C1的中點(diǎn),則異面直線AM和CN所成角的余弦值為$\frac{\sqrt{30}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$-$\frac{{z}^{2}}{3}$=1表示的曲面是(  )
A.旋轉(zhuǎn)雙曲面B.旋轉(zhuǎn)橢球面C.旋轉(zhuǎn)拋物面D.橢圓拋物面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線M的頂點(diǎn)在原點(diǎn),焦點(diǎn)為(0,$\frac{1}{4}$),半徑為1的圓N的圓心N(0,b)在直線l:4x-4y+5=0上.
(1)求拋物線M與圓N的標(biāo)準(zhǔn)方程;
(2)直線1與拋物線M相交于A、B兩點(diǎn),求弦AB的長(zhǎng);
(3)求圓N的圓心到拋物線M的最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案