設雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設直線l與y軸的交點為P,且=,求a的值.

1、離心率e的取值范圍為(,)∪(,+∞).

2、a=.


解析:

(1)由C與l相交于兩個不同的點,故知方程組有兩個不同的實數(shù)解,消去y并整理得(1-a2)x2+2a2x-2a2=0.                                                   ①

所以

解得0<a<且a≠1.

雙曲線的離心率e==,

∵0<a<且a≠1,

∴e>且e≠,即離心率e的取值范圍為(,)∪(,+∞).

(2)設A(x1,y1),B(x2,y2),P(0,1),

=,

∴(x1,y1-1)=(x2,y2-1).

由此得x1=x2.

由于x1、x2都是方程①的根,且1-a2≠0,所以x2=-,x22=-.

消去x2得-=.

又a>0,所以a=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線C:-y2=1的右焦點為F,直線l過點F.若直線l與雙曲線C的左、右兩支都相交,則直線l的斜率k的取值范圍是

A.k≤或k≥                              B.k<或k>

C.<k<                                  D.≤k≤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設直線l與y軸的交點為P,且=,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設直線l與y軸的交點為P,且=,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:-y2=1的右焦點為F,直線l過點F且斜率為k,若直線l與雙曲線C的左、右兩支都相交,則直線l的斜率的取值范圍是

A.k≤-或k≥                       B.k<-或k>

C.-<k<                             D.-≤k≤

查看答案和解析>>

同步練習冊答案