【題目】已知函數(shù)y=3tan.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的定義域;
(3)說明此函數(shù)的圖象是由y=tan x的圖象經過怎樣的變換得到的?
【答案】(1);(2);(3)見解析
【解析】
(1)根據(jù)周期公式求解即可.(2)將作為一個整體,并結合正切函數(shù)的定義域求解.(3)按照先在軸方向上進行平移變換和伸縮變換,再在軸方向上進行伸縮變換的思路寫出變換過程.
(1)由題意得,函數(shù)的最小正周期.
(2)由,
得.
所以原函數(shù)的定義域為.
(3)把函數(shù)圖象上所有的點向右平移個單位長度,得函數(shù)y=tan的圖象,再將圖象上各點的橫坐標縮短到原來的(縱坐標不變),得函數(shù)y=tan的圖象,最后將圖象上各點的縱坐標伸長到原來的3倍(橫坐標不變),得函數(shù)y=3tan的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=f(x)﹣k.
(1)當m=2時,若函數(shù)g(x)有兩個零點,則k的取值范圍是;
(2)若存在實數(shù)k使得函數(shù)g(x)有兩個零點,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集為[0,4],求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過橢圓C的右焦點且垂直于x軸的直線與橢圓交于A,B兩點,且|AB|= .
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于E,F(xiàn)兩點,若存在點G(﹣1,y0)使△EFG為等邊三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點與點的距離比它的直線的距離小2.
(1)求點的軌跡方程;
(2)是點軌跡上互相垂直的兩條弦,問:直線是否經過軸上一定點,若經過,求出該點坐標;若不經過,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為為曲線上的動點,點在線段上,且滿足.
(1)求點的軌跡的直角坐標方程;
(2)直線的參數(shù)方程是(為參數(shù)),其中. 與交于點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin
(A>0,ω>0)的最小值為-2,其圖象相鄰兩個對稱中心之間的距離為.
(1)求f(x)的最小正周期及對稱軸方程;
(2)若f,求f的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 為等差數(shù)列 的前n項和,且 記 ,其中 表示不超過x的最大整數(shù),如 .
(1)求 ;
(2)求數(shù)列 的前1 000項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求證:PD 平面PAB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點M,使得BMll平面PCD?若存在,求 的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com