10.已知全集U={1,2,4,6,8},集合A={2,6},B={1,2,4},則∁U(A∪B)={8}.

分析 由A與B,求出兩集合的并集,根據(jù)全集U,求出并集的補(bǔ)集即可.

解答 解:∵A={2,6},B={1,2,4},
∴A∪B={1,2,4,6},
∵全集U={1,2,4,6,8},
∴∁U(A∪B)={8},
故答案為:{8}

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.滕州市正在積極創(chuàng)建國(guó)家森林城市,為加快生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為x億元,其中用于風(fēng)景區(qū)改造的為y億元.我市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列兩個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.若每年改造生態(tài)環(huán)境的總費(fèi)用至少1億元,至多4億元,請(qǐng)你分析能否采用函數(shù)模型y=$\frac{1}{100}$(x3+4x+16)作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.復(fù)數(shù)4+3i的虛部為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.用反證法證明某命題時(shí),對(duì)結(jié)論“自然數(shù)a,b,c至少有1個(gè)奇數(shù)”的正確假設(shè)為“假設(shè)自然數(shù)a,b,c沒(méi)有奇數(shù)或全是偶數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.2016(10)=31031(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知命題p:關(guān)于實(shí)數(shù)x的方程4x2-4mx+m2-1=0的一根比1大另一根比1。幻}q:函數(shù)f(x)=2x-1-m在區(qū)間(2,+∞)上有零點(diǎn).
(1)命題“p或q”真,“p且q”假,求實(shí)數(shù)m的取值范圍.
(2)當(dāng)命題P為真時(shí),實(shí)數(shù)m的取值集合為集合M,若命題:?x∈M,x2-ax+1≤0為真,則求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長(zhǎng)是6.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-t)2+y2=$\frac{4}{9}$,過(guò)橢圓的上頂點(diǎn)M作圓T的兩條切線(xiàn)交橢圓于E、F兩點(diǎn),當(dāng)圓心在x軸上移動(dòng)且t∈(0,1)時(shí),求EF的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.根據(jù)數(shù)列2,5,9,19,37,75…的前六項(xiàng)找出規(guī)律,可得a7=( 。
A.140B.142C.146D.149

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若tana=-1,且0°≤a≤180°,則a=135°.

查看答案和解析>>

同步練習(xí)冊(cè)答案