分析 (1)由橢圓離心率得到a,c的關(guān)系,再由△PF1F2的周長(zhǎng)是6,得a,c的另一關(guān)系,聯(lián)立求得a,c的值,代入隱含條件求得b,則橢圓方程可求;
(2)橢圓的上頂點(diǎn)為M(0,$\sqrt{3}$),設(shè)過(guò)點(diǎn)M與圓T相切的直線方程為y=kx+$\sqrt{3}$,由圓心到切線距離等于半徑得到關(guān)于切線斜率的方程,由根與系數(shù)關(guān)系得到k1+k2=-$\frac{18\sqrt{3}t}{9{t}^{2}-4}$,k1k2=$\frac{23}{9{t}^{2}-4}$,再聯(lián)立一切線方程和橢圓方程,求得E的坐標(biāo),同理求得F坐標(biāo),另一兩點(diǎn)求斜率公式得到kEF=$\frac{3({k}_{1}+{k}_{2})}{3-4{k}_{1}{k}_{2}}$=$\frac{54\sqrt{3}t}{104-27{t}^{2}}$.然后由函數(shù)單調(diào)性求得EF的斜率的范圍.
解答 解:(1)由e=$\frac{1}{2}$,即$\frac{c}{a}$=$\frac{1}{2}$,
由△PF1F2的周長(zhǎng)是6,
由橢圓的定義可得2a+2c=6,
解得a=2,c=1,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
所求橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)橢圓的上頂點(diǎn)為M(0,$\sqrt{3}$),
設(shè)過(guò)點(diǎn)M與圓T相切的直線方程為y=kx+$\sqrt{3}$,
由直線y=kx+$\sqrt{3}$與T相切可知$\frac{|kt+\sqrt{3}|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{3}$,
即(9t2-4)k2+18$\sqrt{3}$tk+23=0,
可得k1+k2=-$\frac{18\sqrt{3}t}{9{t}^{2}-4}$,k1k2=$\frac{23}{9{t}^{2}-4}$,
由$\left\{\begin{array}{l}{y={k}_{1}x+\sqrt{3}}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,得(3+4k12)x2+8$\sqrt{3}$k1x=0.
解得xE=-$\frac{8\sqrt{3}{k}_{1}}{3+4{{k}_{1}}^{2}}$,
同理xF=-$\frac{8\sqrt{3}{k}_{2}}{3+4{{k}_{2}}^{2}}$,
則kEF=$\frac{{y}_{E}-{y}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{({k}_{1}{x}_{E}+\sqrt{3})-({k}_{2}{x}_{F}+\sqrt{3})}{{x}_{E}-{x}_{F}}$
=$\frac{{k}_{1}{x}_{E}-{k}_{2}{x}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{3({k}_{1}+{k}_{2})}{3-4{k}_{1}{k}_{2}}$=$\frac{54\sqrt{3}t}{104-27{t}^{2}}$.
當(dāng)0<t<1時(shí),f(t)=$\frac{54\sqrt{3}t}{104-27{t}^{2}}$為增函數(shù),
故EF的斜率的范圍為(0,$\frac{54\sqrt{3}}{77}$).
點(diǎn)評(píng) 本題考查了橢圓方程的求法,考查了直線與圓,直線與橢圓的位置關(guān)系,直線與圓相切的條件,訓(xùn)練了利用函數(shù)單調(diào)性求函數(shù)的最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,2) | B. | (-1,1) | C. | (-2,1) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -6 | B. | 6 | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com