【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.
(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形,為的中點,將沿直線翻折成,連接,為的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得B.翻折過程中,的長是定值
C.若,則;D.若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點為直線上一動點,過點P引圓M的兩條切線,切點分別為A,B.
(1)若P的坐標為,求切線方程;
(2)求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,真命題的個數(shù)是 ( 。
①命題:“已知 ,“”是“”的充分不必要條件”;
②命題:“p且q為真”是“p或q為真”的必要不充分條件;
③命題:已知冪函數(shù)的圖象經過點(2,),則f(4)的值等于;
④命題:若,則.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.
(1)求橢圓的方程;
(2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,其中,為正實數(shù).
(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;
(2)設,證明:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過點的直線與有兩個不同的交點,線段的中點為,為坐標原點,直線與直線分別交直線于點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求線段的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面平面,底面為梯形,,,且,,.
(I)求證:;
(II)求二面角_____的余弦值;
從①,②,③這三個條件中任選一個,補充在上面問題中并作答.注:如果選擇多個條件分別解答,按第一個解答計分.
(III)若是棱的中點,求證:對于棱上任意一點,與都不平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com