【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對(duì)任意x,x,xx,有。
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
分析:(1)根據(jù)對(duì)數(shù)函數(shù)定義可知定義域?yàn)榇笥?/span>0的數(shù),求出f′(x)討論當(dāng)a-1=1時(shí)導(dǎo)函數(shù)大于0,函數(shù)單調(diào)遞增;當(dāng)a-1>1時(shí)討論函數(shù)的增減性;(2)構(gòu)造函數(shù)g(x)=f(x)+x,求出導(dǎo)函數(shù),根據(jù)a的取值范圍得到導(dǎo)函數(shù)一定大于0,則g(x)為單調(diào)遞增函數(shù),則利用當(dāng)x1>x2>0時(shí)有g(x1)-g(x2)>0即可得證.
詳解:
(1)的定義域?yàn)?/span>.
.
(i)若即,則,故在上單調(diào)遞增.
(ii)若,而,故,則當(dāng)時(shí),;
當(dāng)及時(shí),,
故在單調(diào)遞減,在,單調(diào)遞增.
(iii)若即,同理可得在單調(diào)遞減,在,單調(diào)遞增.
(2)考慮函數(shù),
則
由于,故,即在單調(diào)增加,從而當(dāng)時(shí)有,即,故,
當(dāng)時(shí),有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是.
(1)求曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)設(shè)點(diǎn),為曲線(xiàn)上的動(dòng)點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)五位自然數(shù)數(shù)稱(chēng)為“跳躍數(shù)”,如果同時(shí)有或(例如13284,40329都是“跳躍數(shù)”,而12345,54371,94333都不是“跳躍數(shù)”),則由1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字且1,4不相鄰的“跳躍數(shù)”共有_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)都有(是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有唯一一個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.
(1)求證:平面平面;
(2)若點(diǎn)在線(xiàn)段上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為(0,1)
(1)求拋物線(xiàn)C的方程;
(2)設(shè)直線(xiàn)l2:y=kx+m與拋物線(xiàn)C有唯一公共點(diǎn)P,且與直線(xiàn)l1:y=﹣1相交于點(diǎn)Q,試問(wèn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過(guò)點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P是△PMN的頂點(diǎn),M(﹣2,0),N(2,0),直線(xiàn)PM,PN的斜率之積為﹣ .
(1)求點(diǎn)P的軌跡E的方程;
(2)設(shè)四邊形ABCD的頂點(diǎn)都在曲線(xiàn)E上,且AB∥CD,直線(xiàn)AB,CD分別過(guò)點(diǎn)(﹣1,0),(1,0),求四邊形ABCD的面積為時(shí),直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若直線(xiàn)且曲線(xiàn)在A處的切線(xiàn)與在B處的切線(xiàn)相互平行,求a的取值范圍;
(Ⅱ)設(shè)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)且若不等式恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com