分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(II)anbn=(4-n)$•(\frac{1}{3})^{n}$.由anbn≥0,解得n≤4.可得數(shù)列{tn}的最大項(xiàng)為t3或t4.
解答 解:(I)∵等差數(shù)列{an}和等比數(shù)列{bn}的公差和公比都等于d(d≠1),且a1=b1,a2=2b2,a3=3b3.
∴a1+d=2a1d,a1+2d=3${a}_{1}qco59nq^{2}$,化為3d2-4d+1=0.
解得a1=-1,d=$\frac{1}{3}$.
∴an=$-1+\frac{1}{3}(n-1)$=$\frac{n-4}{3}$.
bn=-$(\frac{1}{3})^{n-1}$.
(II)anbn=(4-n)$•(\frac{1}{3})^{n}$.
由anbn≥0,解得n≤4.
tn=a1b1+a2b2+…+anbn,
∴數(shù)列{tn}的最大項(xiàng)為t3或t4.
t3=t4=$3×\frac{1}{3}$+2×$(\frac{1}{3})^{2}$+1×$(\frac{1}{3})^{3}$=$\frac{34}{27}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{23}{4}$,$\frac{29}{4}$) | B. | ($\frac{20}{3}$,$\frac{29}{4}$) | C. | ($\frac{23}{4}$,$\frac{20}{3}$) | D. | (-∞,$\frac{20}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com