19.在△ABC中,a,b,c分別為角A,B,C的對邊,$b=1,c=\sqrt{3},B={30°}$,則a=1或2.

分析 由已知利用正弦定理可求sinC=$\frac{\sqrt{3}}{2}$,結(jié)合范圍C∈(30°,180°),可得:C=60°,或120°,分類討論即可得解a的值.

解答 解:∵$b=1,c=\sqrt{3},B={30°}$,
∴sinC=$\frac{csinB}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∵c>b,C∈(30°,180°),可得:C=60°,或120°,
∴當C=60°時,A=90°,a=$\sqrt{^{2}+{c}^{2}}$=$\sqrt{1+3}$=2;
當C=120°時,A=30°,a=b=1.
故答案為:1或2.

點評 本題主要考查了正弦定理,勾股定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知拋物線y2=4x的準線與x軸交于點P,過點P且斜率為k(k>0)的直線l與拋物線交于A,B兩點,F(xiàn)為拋物線的焦點,若|FB|=2|FA|,則k的值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)雙曲線C經(jīng)過點$(1,\frac{{3\sqrt{5}}}{2})$,且漸近線的方程為$y=±\frac{3}{2}x$,
求(1)雙曲線C的方程;
(2)雙曲線C的離心率及頂點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知x∈(0,π),且cos(2x-$\frac{π}{2}$)=sin2x,則tan(x-$\frac{π}{4}$)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知拋物線:y2=2px(p>0)的焦點為F,點A(m,2)(m>1)是拋物線上一點,且滿足|AF|=$\frac{5}{2}$.
(1)求拋物線的方程;(2)已知M(-2,0),N(2,0),過N的直線與拋物線交于C,D兩點,若S△MCD=16,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知tanθ=2,則$\frac{5sinθ-cosθ}{sinθ+cosθ}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在四棱柱ABCD-A1B1C1D1中,底面ABCD為矩形,AB=3,AD=1,AA1=2,且∠BAA1=∠DAA1=60°.則異面直線AC與BD1所成角的余弦值為$\frac{7\sqrt{10}}{40}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=2x+2-x
(Ⅰ)試寫出這個函數(shù)的性質(zhì)(不少于3條,不必說明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4-x-af(x),求這個函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓${C_1}:{x^2}+{y^2}=1$,圓${C_2}:{(x-3)^2}+{(y-4)^2}=9$,則圓C1與圓C2的位置關(guān)系是( 。
A.內(nèi)含B.外離C.相交D.相切

查看答案和解析>>

同步練習冊答案