13.設(shè)拋物線y2=4x焦點F,經(jīng)過點P(4,1)的直線l與拋物線相交于A、B兩點,且點P恰好為線段AB的中點,則|AF|+|BF|=10.

分析 設(shè)A(x1,y1),B(x2,y2),由拋物線的定義,得|AF|=x1+1,|BF|=x2+1.又根據(jù)中點坐標(biāo)公式,可得x1+x2=8,代入前式即可得到|AF|+|BF|的值.

解答 解:設(shè)A(x1,y1),B(x2,y2),
作出拋物線的準(zhǔn)線:x=-1,過A、B分別作準(zhǔn)線的垂線,垂足分別為C、D,
根據(jù)拋物線的定義,得
|AF|=|AC|=x1+1,|BF|=|BD|=x2+1,故|AF|+|BF|=(x1+x2)+2
∵AB中點為P(4,1),
∴$\frac{1}{2}$(x1+x2)=4,可得x1+x2=8
∴|AF|+|BF|=(x1+x2)+2=10
故答案為:10.

點評 本題給出拋物線的弦AB的中點坐標(biāo),求A、B兩點到焦點距離之和,著重考查了拋物線的定義、標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的七面體是由三棱臺ABC-A1B1C1和四棱錐D-AA1C1C對接而成,四邊形ABCD是邊長為2的正方形,BB1⊥平面⊥ABCD,BB1=2A1B1=2.
(1)求證:平面AA1C1C⊥平面BB1D;
(2)求二面角A一A1D一C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一名小學(xué)生的年齡和身高(單位:cm)的數(shù)據(jù)如下表:
年齡x6789
身高y118126136144
由散點圖可知,身高y與年齡x之間的線性回歸方程為$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,則a的值為(  )
A.65B.74C.56D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)Sn為等差數(shù)列{an}的前n項和,其中a1=1,且$\frac{{S}_{n}}{{a}_{n}}$=λan+1(n∈N*).記bn=$\frac{{a}_{n}}{{3}^{n}}$,數(shù)列{bn}的前n項和為Tn,若對任意的n≥k(k∈N*),都有|Tn-$\frac{3}{4}$|<$\frac{1}{4n}$,則常數(shù)k的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若sinxcosy+cosxsiny=$\frac{1}{2}$,cos2x-cos2y=$\frac{2}{3}$,則sin(x-y)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b為非零實數(shù),z=a+bi,“z2為純虛數(shù)”是“a=b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lg$\frac{2-x}{x-1}$的定義域為集合A,函數(shù)g(x)=$\sqrt{2x-a}$的定義域為集合B.
(1)求集合A,B;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若命題p:?x≥0,ex+2x-1≥0,則命題p的否定為( 。
A.?x0<0,e${\;}^{{x}_{0}}$+2x0-1<0B.?x≥0,ex+2x-1<0
C.?x0≥0,e${\;}^{{x}_{0}}$+2x0-1<0D.?x0<0,e${\;}^{{x}_{0}}$+2x0-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知球O的半徑為2,圓M和圓N是球的互相垂直的兩個截面,圓M和圓N的面積分別為2π和π,則|MN|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案