A. | 45° | B. | 60° | C. | 120° | D. | 135° |
分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與夾角公式,求出$\overrightarrow a+\overrightarrow b$與$\vec b$夾角的余弦值,即可求出夾角θ.
解答 解:向量$\overrightarrow a=({-1,2}),\overrightarrow b=({2,1})$,
∴$\overrightarrow a+\overrightarrow b$=(1,3),
|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{1}^{2}{+3}^{2}}$=$\sqrt{10}$,
∴($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=1×2+3×1=5,
又|$\vec b$|=$\sqrt{{2}^{2}{+1}^{2}}$=$\sqrt{5}$,
設(shè)$\overrightarrow a+\overrightarrow b$與$\vec b$的夾角為θ,
則cosθ=$\frac{(\overrightarrow{a}+\overrightarrow)•\overrightarrow}{|\overrightarrow{a}+\overrightarrow|×|\overrightarrow|}$=$\frac{5}{\sqrt{10}×\sqrt{5}}$=$\frac{\sqrt{2}}{2}$,
∵$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow$夾角θ的取值范圍為[0,π],
∴夾角θ=45°.
故選:A.
點(diǎn)評 本題考查了平面向量坐標(biāo)表示與夾角大小的計算問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{3}$] | B. | [$\frac{1}{3}$,1] | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{{2\sqrt{3}}}{3}$) | B. | (1,2) | C. | (2,+∞) | D. | ($\frac{{2\sqrt{3}}}{3}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com