【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長為20米的正方形內種植經紅色郁金香,在正方形的剩余部分(即四個直角三角形內)種植黃色郁金香.現要在以為邊長的矩形內種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設,米.
(1)求與之間的函數關系式;
(2)求的最大值.
科目:高中數學 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;
(2)已知某人一天的走路步數超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知函數,試判斷函數的單調性,并說明理由;
(2)已知函數.
(i)判斷的奇偶性,并說明理由;
(ii)求證:對于任意的x ,y∈R,且x≠±1 ,y≠±1,xy≠1都有①.
(3)由⑵可知滿足①式的函數是存在的,如.問:滿足①的函數是否存在無窮多個?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b為常數,a0,函數.
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數;
②若,,且在區(qū)間[1,2]上是增函數,求由所有點形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,B,C分別是海岸線上的兩個城市,兩城市間由筆直的海濱公路相連,B,C之間的距離為100km,海島A在城市B的正東方50處.從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C.已知船速為25km/h,車速為75km/h.
(1)試建立由A經P到C所用時間與的函數解析式;
(2)試確定登陸點P的位置,使所用時間最少,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(,且).
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)求函數在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數來研究求得函數的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區(qū)間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com