【題目】現(xiàn)有一張長為80cm、寬為60cm的長方形鐵皮ABCD,準備用它做成一只無蓋長方體鐵皮盒,要求材料利用率為100%,不考慮焊接處損失如圖,若長方形ABCD的一個角剪下一塊正方形鐵皮,作為鐵皮盒的底面,用余下材料剪拼后作為鐵皮盒的側面,設長方體的底面正方形邊長為x(cm),高為y(cm),體積為V(cm3).

(1)y關于x的表達式;

(2)該鐵皮盒體積V的最大值

【答案】1y,0x60.232000 cm3

【解析】

(1)根據(jù)一張長為80cm,寬為60cm的長方形鐵皮ABCD,可得x2+4xy=4800,進而可確定xy的關系式;

(2)鐵皮盒體積,求導函數(shù),確定函數(shù)的極值,極大值,也是最大值.

(1)由題意得,.

關于的表達式為,.

(2)鐵皮盒體積

.

.

因為,,是增函數(shù);

,,是減函數(shù),

所以,

時取得極大值,也是最大值,其值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線.

(1)若拋物線和直線沒有公共點,求的取值范圍;

(2)若,且拋物線和直線只有一個公共點時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的一個極值點.

1)求函數(shù)的單調區(qū)間;

2)若當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校高一年級研究性學習小組共有9名學生,其中有3名男生和6名女生.在研究性學習過程中,要進行兩次匯報活動(即開題匯報和結題匯報),每次匯報都從這9名學生中隨機選1 人作為代表發(fā)言.設每人每次被選中與否均互不影響.

1求兩次匯報活動都由小組成員甲發(fā)言的概率;

2為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),求:

(1)函數(shù)的圖象在點(0,-2)處的切線方程;

(2)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線為參數(shù),),曲線為參數(shù)),相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.

1)求的極坐標方程及點的極坐標;

2)已知直線與圓交于,兩點,記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20181024日,世界上最長的跨海大橋—港珠澳大橋正式通車。在一般情況下,大橋上的車流速度v(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù)當橋上的車流密度達到220輛/千米,將造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米,車流速度為100千米/時研究表明:當時,車流速度v是車流密度x的一次函數(shù).

1)當時,求函數(shù)的表達式;

2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/時)可以達到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志是連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是(

A.甲地:總體均值為3,中位數(shù)為4B.乙地:中位數(shù)為2,眾數(shù)為3

C.丙地:總體均值為2,總體方差為3D.丁地:總體均值為1,總體方差大于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標原點O為極點,以x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為

求直線l的普通方程及曲線C的直角坐標方程;

若直線l與曲線C交于A,B兩點,求線段AB的中點P到坐標原點O的距離.

查看答案和解析>>

同步練習冊答案