已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;(2)求的取值范圍;

(1);(2) 的取值范圍是.

解析試題分析:(1)先由離心率得出的關(guān)系,再由原點(diǎn)到直線的距離等于解得,故,橢圓方程為;(2)聯(lián)立直線和橢圓的方程,因?yàn)橹本和橢圓有兩個(gè)交點(diǎn)可求得的范圍,再設(shè)出交點(diǎn),計(jì)算,由得范圍求得
試題解析:(Ⅰ)由題意知,∴,即
,∴ 故橢圓的方程為    4分
(Ⅱ)解:由得:          6分

設(shè),則     8分
  10分
,  ∴
的取值范圍是.                   13分
考點(diǎn):1.橢圓的方程;2.橢圓的離心率;3.直線和橢圓的綜合應(yīng)用;4.向量的數(shù)量積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線與直線相切,是拋物線上兩個(gè)動(dòng)點(diǎn),為拋物線的焦點(diǎn),的垂直平分線軸交于點(diǎn),且.
(1)求的值;
(2)求點(diǎn)的坐標(biāo);
(3)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄AC經(jīng)過點(diǎn),且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點(diǎn)的直線m交曲線E于A,B兩點(diǎn),過A,B兩點(diǎn)分別作曲線E的切線,兩切線交于點(diǎn)C,當(dāng)△ABC的面積為時(shí),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試問:當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)的距離比它到軸的距離大
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)為曲線上的一個(gè)動(dòng)點(diǎn),點(diǎn),軸上,若為圓的外切三角形,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案