【題目】如圖,在三棱柱與四棱錐
的組合體中,已知
平面
,四邊形
是平行四邊形,
,
,
,
,設(shè)
是線段
中點.
(1)求證: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:取的中點
,連接
,易證
為平行四邊形,從而得到
,再利用線面平行的判定定理即可;
(2)根據(jù),證得
,即
,進一步可證
,從而證得
面
,于是得
平面
,利用面面垂直的判定定理可得結(jié)論;
(3)利用等體積法,即可求得點到平面
的距離.
試題解析:
(1)證明:取的中點
,連結(jié)
,
,
,則
、
、
三點共線,
∵為三棱柱,∴平面
平面
,
故且
,∴四邊形
為平行四邊形,∴
,又∵
面
,
面
面
.
(2)證明:∵,
,
,作
于
,
可得,
,
,則
,
∴,即
,
又平面
,
平面
,
,
在三棱柱中,
而
,
∴平面
,又
,得
平面
,
而平面
,∴平面
平面
.
(3)由(2)知, ,又
,∴
平面
,
即為四棱錐
的高,
,又
,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,你認為選派哪位學生參加較合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
.
(1)若是從0、1、2、3四個數(shù)中任取的一個數(shù),
是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率;
(2)若是從區(qū)間
任取的一個數(shù),
是從區(qū)間
任取的一個數(shù),求上述方程有實數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=log x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程是
,圓
的極坐標方程是
.
(1)求 與
交點的極坐標;
(2)設(shè) 為
的圓心,
為
與
交點連線的中點,已知直線
的參數(shù)方程是
(
為參數(shù)),求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱與四棱錐
的組合體中,已知
平面
,四邊形
是平行四邊形,
,
,
,
,設(shè)
是線段
中點.
(1)求證: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的是( )
A.命題“ ,
”的否定是“
,
”
B.命題“ 為真”是命題“
為真”的充分不必要條件
C.命題“若am2≤bm2 , 則a≤b”是假命題
D.命題“在中 中,若
,則
”的逆否命題為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌馬獲勝的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com