【題目】已知直線、、兩兩成異面直線.問是否存在直線同時與、、相交?證明你的結(jié)論.
【答案】存在
【解析】
結(jié)論是肯定的.我們分兩種情況證明存在這樣的直線同時與、、相交.
在直線上任取一點,過作,作.
(1)若、、三線共面.
過、作平面,過、作平面,由,有公共點,知,必相交于過的一條直線.在內(nèi),與相交于,必與的平行線相交,記交點為;在內(nèi),與相交于,必與的平行線相交,記交點為.得直線與相交于,與相交于,與相交于.
(2)若、、三線不共面.
作一個平行六面體,使在上,在上,在上.在線段內(nèi)取一點,過不共線的三點、、作一個平面與相交于,與相交于.在平面內(nèi),因,直線與平行線中的一條相交必與另一條相交,記交點為.得直線與交于,與交于,與交于.
由的任意性還可知,這樣的直線有無窮條.
科目:高中數(shù)學 來源: 題型:
【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習俗,設一盤中裝有10個粽子,其中豆沙粽子3個,肉粽子2個,白粽子5個,這三種粽子的外觀完全相同,從中任意選取3個.
(1)求三種粽子各取到1個的概率;
(2)設ξ表示取到的豆沙粽子個數(shù),求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,將函數(shù)的圖象向右平移個單位長度,再向下平移個單位長度后,得到函數(shù)的圖象.
(1)求函數(shù)的表達式;
(2)當時,求在區(qū)間上的最大值和最小值;
(3)若函數(shù)在上的最小值為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進行流行病學統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù).
(1)請將列聯(lián)表填寫完整:
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 27 | ||
無武漢旅行史 | 18 | ||
總計 | 27 | 54 |
(2)能否在犯錯誤的概率不超過0.025的前提下認為有武漢旅行史與有確診病例接觸史有關(guān)系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且時,.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域;
(Ⅲ)設函數(shù)的定義域為集合,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè)以增加收入.計劃共投入80萬元,全部用于甲、乙兩個項目,要求每個項目至少要投入20萬元在對市場進行調(diào)研時發(fā)現(xiàn)甲項目的收益與投入x(單位:萬元)滿足,乙項目的收益與投入x(單位:萬元)滿足.
(1)當甲項日的投入為25萬元時,求甲、乙兩個項目的總收益;
(2)問甲、乙兩個項目各投入多少萬元時,總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的最小值為1,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)m的取值范圍;
(3)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com