5.已知平面內(nèi)三個(gè)向量:$\overrightarrow{a}$=(3,2). $\overrightarrow$=(-1,2). $\overrightarrow{c}$=(4,1)
 (1)求($\overrightarrow{a}$+λ $\overrightarrow{c}$)和(2$\overrightarrow$-$\overrightarrow{a}$)的坐標(biāo)
(2)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)∥(2 $\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)λ;
(3)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)⊥(2 $\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)λ.

分析 (1)利用坐標(biāo)運(yùn)算,真假求解即可.
(2)利用向量共線的充要條件列出方程求解即可.
(3)利用向量垂直,數(shù)量積為0,列出方程求解即可.

解答 解:平面內(nèi)三個(gè)向量:$\overrightarrow{a}$=(3,2). $\overrightarrow$=(-1,2). $\overrightarrow{c}$=(4,1)
 (1)$\overrightarrow{a}$+λ $\overrightarrow{c}$=(3+4λ,2+λ);
2$\overrightarrow$-$\overrightarrow{a}$=(-5,2).
(2)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)∥(2 $\overrightarrow$-$\overrightarrow{a}$),可得:6+8λ=-10-5λ,解得λ=-$\frac{16}{13}$;
(3)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)⊥(2 $\overrightarrow$-$\overrightarrow{a}$),可得:-15-20λ+4+2λ=0,解得λ=$\frac{11}{18}$.

點(diǎn)評(píng) 本題考查向量共線與垂直的充要條件的應(yīng)用,數(shù)量積的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以下命題正確的個(gè)數(shù)為(  )
①若“p且q”與“?p或q”均為假命題,則p真q假;
②“a>0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(-∞,0)上單調(diào)遞減”的充要條件;
③函數(shù)f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,則a的取值范圍是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則m<10.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求下列函數(shù)的定義域.
(1)$f(x)=\frac{{\sqrt{{x^2}-2x-15}}}{{|{x+3}|-3}}$
(2)$f(x)=\frac{1}{{1+\frac{1}{x-1}}}+{(2x-1)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在2×2列聯(lián)表:
y1y2總計(jì)
x1aba+b
x2cdc+d
總計(jì)a+cb+da+b+c+d
數(shù)值$\frac{a}{a+b}$和$\frac{c}{c+d}$相差越大,則兩個(gè)變量有關(guān)系的可能性就(  )
A.越大B.越小C.無(wú)法判定D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$0<β<α<\frac{π}{2}$,且$cosα=\frac{5}{13}$,$cos(α-β)=\frac{4}{5}$.
(Ⅰ)求$cos(α+\frac{π}{4})$的值;                  
(Ⅱ)求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率直方分布圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)根據(jù)頻率直方分布圖計(jì)算該班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的平均數(shù);
(3)從成績(jī)低于60分的學(xué)生中隨機(jī)選取2人,求該2人中恰好只有1人成績(jī)?cè)赱50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖所示,ABCD是一平面圖形的水平放置的斜二測(cè)直觀圖,在斜二測(cè)直觀圖中,ABCD是一直角梯形,AB∥CD,AD⊥CD,且BC與y軸平行,若AB=6,DC=4,AD=2,則這個(gè)平面圖形的實(shí)際面積是20$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知AB是圓O的直徑,BC與圓O相切與B,D為圓O上的一點(diǎn),連接DC,DA,CO,DO,∠DAO+∠AOC=180°.
(1)證明:△OBC≌△ODC;
(2)證明:AD•OC=AB•OD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)正四面體玩具的四個(gè)面分別標(biāo)有數(shù)字1、2、3、4,現(xiàn)投擲該玩具兩次,觀察向下一面的數(shù)字,則事件“兩次出現(xiàn)的數(shù)字中至少有一個(gè)比2大”發(fā)生的概率為$\frac{15}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案