分析 通過將字母a作為未知數(shù),b、c看做系數(shù),構(gòu)造一次函數(shù)f(a)=(b+c)a+bc+1,利用f(a)在[-1,1]上恒為非負(fù)即得結(jié)論.
解答 證明:設(shè)f(a)=(b+c)a+bc+1,則f(a)是關(guān)于a的一次函數(shù),
∵a,b,c∈[-1,1],
∴f(1)=b+c+bc+1=b(1+c)+(c+1)=(b+1)(c+1)≥0,
f(-1)=-(b+c)+bc+1=b(c-1)+1-c=(1-b)(1-c)≥0,
∴f(a)在[-1,1]上恒為非負(fù),
∴ab+bc+ca+1≥0.
點(diǎn)評(píng) 本題考查不等式的證明,本解法的關(guān)鍵在于具有函數(shù)意識(shí),運(yùn)用函數(shù)思想構(gòu)造一次函數(shù),由一次函數(shù)的圖象性質(zhì)使問題得以解決,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a<b | B. | 1<b<a | C. | 0<a<b<1 | D. | 0<b<a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y-3=0 | B. | 2x+y-3=0 | C. | x-2y-3=0 | D. | x+2y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為$\frac{π}{2}$的奇函數(shù) | B. | 最小正周期為π的奇函數(shù) | ||
C. | 最小正周期為$\frac{π}{2}$的偶函數(shù) | D. | 最小正周期為π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com