4.某品牌服裝專賣店為了解保暖襯衣的銷售量y(件)與平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了連續(xù)四旬的銷售量與當(dāng)旬平均氣溫,其數(shù)據(jù)如表:
時間 二月上旬二月中旬 二月下旬 三月上旬 
 旬平均氣溫x(℃) 3 8 12 17
 旬銷售量y(件) 55 m 3324
由表中數(shù)據(jù)算出線性回歸方程y=$\widehat$x+$\widehat{a}$中的$\widehat$=-2,樣本中心點(diǎn)為(10,38).
(1)表中數(shù)據(jù)m=40;
(2)氣象部門預(yù)測三月中旬的平均氣溫約為22℃,據(jù)此估計,該品牌的保暖襯衣在三月中旬的銷售量.

分析 (1)由樣本中心點(diǎn)$\overline{y}$=38,根據(jù)平均值的定義,即可求得m的值;
(2)根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出a的值,寫出線性回歸方程.當(dāng)x=22時,代入回歸直線方程,進(jìn)而利用方程進(jìn)行預(yù)測.

解答 解:(1)由樣本中心點(diǎn)為(10,38).即$\overline{y}$=38,
由$\overline{y}$=$\frac{55+m+33+24}{4}$=38,解得m=40,
(2)由(1)可知線性回歸方程y=-2x+$\widehat{a}$,過樣本中心點(diǎn),
$\widehat{a}$=$\overline{y}$+2$\overline{x}$=38+2×10=58,
故回歸直線方程為:y=-2x+58;
當(dāng)x=22時,y=14,
故三月中旬的平均氣溫約為22℃時,該品牌的保暖襯衣在三月中旬的銷售量14件.
故(1)答案為:40.

點(diǎn)評 本題考查線性回歸方程,考查利用線性回歸方程進(jìn)行預(yù)測,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2-a)x-2lnx+a-2,g(x)=xe1-x
(1)若函數(shù)f(x)在區(qū)間(0,$\frac{1}{2}$)無零點(diǎn),求實數(shù)a的最小值
(2)若對任意給定的x0∈(0,e],方程f(x)=g(x0)在(0,e]上總存在兩個不等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐E-ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,$AE=DE=\sqrt{6}$,F(xiàn)為線段DE上的一點(diǎn).
(Ⅰ)求證:平面AED⊥平面ABCD;
(Ⅱ)若二面角E-BC-F與二面角F-BC-D的大小相等,求DF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=ex-3-x+2a(a>0)有且只有兩個零點(diǎn),則實數(shù)a的取值范圍是(  )
A.[0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,AB是圓O的直徑,C為AB的延長線上一點(diǎn),切線CD交圓O于點(diǎn)D,∠ACD的平分線分別交DB,DA于點(diǎn)E,F(xiàn).
(1)求證:DE=DF;
(2)若DA=DC,AC=4,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在[2,+∞) 上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商場經(jīng)營某種商品,在一段時間內(nèi),發(fā)現(xiàn)商品的售價x元和銷售量y件之間的一組數(shù)據(jù),如表所示:
價格x99.510.511
銷售量y111065
通過分析,發(fā)現(xiàn)銷售量y對商品的價格x具有線性相關(guān)關(guān)系.
(1)求$\overline{x}$,$\overline{y}$;
(2)求銷售量y對商品的價格x的回歸直線方程;
(3)預(yù)測售價為10元時,商品的銷售量是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在(1,+∞)上的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),e為自然對數(shù)的底數(shù),且xxf′(x)>ef(x)恒成立,則當(dāng)m>n>0時,有(  )
A.mf(xn)>nf(xmB.mf(xn)<nf(xm
C.mf(xn)=nf(xmD.mf(xn)與nf(xm)大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,正四棱錐S-ABCD的底面邊長為2,E,F(xiàn)分別為SA,SD的中點(diǎn).
(1)當(dāng)SA=$\sqrt{5}$時,證明:平面BEF⊥平面SAD;
(2)若平面BEF與底面ABCD所成的角為$\frac{π}{3}$,求S-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案