分析 (1)f(x)<0時(shí)不可能恒成立,所以要使函數(shù)在(0,$\frac{1}{2}$)上無(wú)零點(diǎn),只需要對(duì)x∈(0,$\frac{1}{2}$)時(shí)f(x)>0恒成立,列出不等式解出a大于一個(gè)函數(shù),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性,根據(jù)函數(shù)的增減性得到這個(gè)函數(shù)的最大值即可得到a的最小值;
(2)求出g′(x),根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,即可求出g(x)的值域,而當(dāng)a=2時(shí)不合題意;當(dāng)a≠2時(shí),求出f′(x)=0時(shí)x的值,根據(jù)x∈(0,e]列出關(guān)于a的不等式得到①,并根據(jù)此時(shí)的x的值討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)f(x)的單調(diào)區(qū)間,根據(jù)單調(diào)區(qū)間得到②和③,令②中不等式的坐標(biāo)為一個(gè)函數(shù),求出此函數(shù)的導(dǎo)函數(shù),討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到此函數(shù)的最大值,即可解出②恒成立和解出③得到④,聯(lián)立①和④即可解出滿足題意a的取值范圍.
解答 解:(1)因?yàn)閒(x)<0在區(qū)間(0,$\frac{1}{2}$)上恒成立不可能,
故要使函數(shù)f(x)在(0,$\frac{1}{2}$)上無(wú)零點(diǎn),
只要對(duì)任意的x∈(0,$\frac{1}{2}$),f(x)>0恒成立,即對(duì)x∈(0,$\frac{1}{2}$),a>2-$\frac{2lnx}{x-1}$恒成立.
令l(x)=2-$\frac{2lnx}{x-1}$,x∈(0,$\frac{1}{2}$),則l(x)=$\frac{2lnx+\frac{2}{x}-2}{{(x-1)}^{2}}$,
再令m(x)=2lnx+$\frac{2}{x}$-2,x∈(0,$\frac{1}{2}$),
則m′(x)=$\frac{-2(1-x)}{{x}^{2}}$<0,故m(x)在(0,$\frac{1}{2}$)上為減函數(shù),于是m(x)>m($\frac{1}{2}$)=2-2ln2>0,
從而,l(x)>0,于是l(x)在(0,$\frac{1}{2}$)上為增函數(shù),所以l(x)<l($\frac{1}{2}$)=2-4ln2,
故要使a>2-$\frac{2lnx}{x-1}$恒成立,只要a∈[2-4ln2,+∞),
綜上,若函數(shù)f(x)在(0,$\frac{1}{2}$)上無(wú)零點(diǎn),則a的最小值為2-4ln2;
(2)g′(x)=e1-x-xe1-x=(1-x)e1-x,
當(dāng)x∈(0,1)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;
當(dāng)x∈(1,e]時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.
又因?yàn)間(0)=0,g(1)=1,g(e)=e•e1-e>0,
所以,函數(shù)g(x)在(0,e]上的值域?yàn)椋?,1].
當(dāng)a=2時(shí),不合題意;
當(dāng)a≠2時(shí),f′(x)=2-a-$\frac{2}{x}$=$\frac{(2-a)(x-\frac{2}{2-a})}{x}$,x∈(0,e]
當(dāng)x=$\frac{2}{2-a}$時(shí),f′(x)=0.
由題意得,f(x)在(0,e]上不單調(diào),故0<$\frac{2}{2-a}$<e,即a<2-$\frac{2}{e}$①
此時(shí),當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下:
x | (0,$\frac{2}{2-a}$) | $\frac{2}{2-a}$ | ($\frac{2}{2-a}$,e] |
f′(x) | - | 0 | + |
f(x) | ↘ | 最小值 | ↗ |
點(diǎn)評(píng) 此題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時(shí)所滿足的條件,是一道壓軸題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow a$∥$\overrightarrow c$ | B. | $\overrightarrow b$∥$\overrightarrow c$ | C. | $\overrightarrow a$⊥$\overrightarrow c$ | D. | $\overrightarrow b$⊥$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,e-1] | B. | {1}∪($\frac{1}{e}$+1,e-1] | C. | [1,$\frac{1}{e}$+1] | D. | ($\frac{1}{e}$+1,e-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
商店名稱 | A | B | C | D |
銷售額(x)/千萬(wàn)元 | 2 | 3 | 5 | 6 |
利潤(rùn)額(y)/百萬(wàn)元 | 2 | 3 | 3 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
時(shí)間 | 二月上旬 | 二月中旬 | 二月下旬 | 三月上旬 |
旬平均氣溫x(℃) | 3 | 8 | 12 | 17 |
旬銷售量y(件) | 55 | m | 33 | 24 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com